长着“铁盔甲”的蜗牛

深海世界生活着一些最神奇的生物,就连蜗牛在这里都变得与众不同。在印度洋深处的海底热液口附近,生活着一种长着“铁盔甲”的蜗牛——作为海洋中生活的腹足类动物,称它们为“海螺”其实更为恰当。这种螺的名字叫鳞角腹足蜗牛(学名:Chrysomallon squamiferum),它们的螺壳由铁的硫化物组成,腹足上覆盖着铁质鳞片,看起来金属感十足,堪称深海版的“钢铁侠”。没错,鳞角腹足蜗牛长出了一副铁盔甲,这在动物世界中是独一份。

  这种令人惊奇的天赋其实要归功于鳞角腹足蜗牛体内的共生细菌。地球上还没有其他动物能以这种方式利用铁元素。而且,由于这种蜗牛的铁化合物具有磁性,有人甚至开玩笑地把它们称为“海底的万磁王”。此外,从比例上看,鳞角腹足蜗牛的心脏体积比许多其他动物都大得多,大约占身体总体积的4%(相比之下,人类的心脏体积只占身体的1.3%)。

鳞角腹足蜗牛(学名:Chrysomallon squamiferum),它们的螺壳由铁的硫化物组成,腹足上覆盖着铁质鳞片  鳞角腹足蜗牛(学名:Chrysomallon squamiferum),它们的螺壳由铁的硫化物组成,腹足上覆盖着铁质鳞片

  奇特的铁甲

  非同寻常的海底热液口环境造就了这种非同寻常的生物。在2400米到2800米的海底,热液口附近的海水流入地壳缝隙,被滚烫的岩浆加热,温度能达到400摄氏度以上,许多有毒物质也随之倾泻而出。2001年,科学家在印度洋的Kairei热液口区首次发现了鳞角腹足蜗牛。即使是在热液口生物群落中,它们也是非常令人惊奇的发现,从来没有一种腹足类动物像它们一样长出数以百计的鳞片!

  可以说,鳞角腹足蜗牛的身体皆被铁化合物覆盖,主要是二硫化亚铁(黄铁矿的主要成分)和四硫化三铁(Fe3S4),后者具有磁性,因此鳞角腹足蜗牛会被磁铁吸住。鳞角腹足蜗牛的螺壳并不像板甲那么坚硬,而更像是锁子甲——柔软却又强韧。它们的螺壳可以分为三层:最外面是一层“镀铁”的物质,厚度约30微米,由铁的硫化物组成;最内侧由钙化的碳酸盐矿物霰石组成,厚度约250微米;而中间是柔软的有机层——相当于其他腹足类的外壳膜,厚度约150微米。铁质可以提供力量,而有机层能吸收掠食者——比如一只挥舞螯肢的螃蟹——攻击时的力道。此外,有机层还具有散热的功能。目前,有研究者正在尝试借鉴鳞角腹足蜗牛的螺壳结构,研究在民用和军事领域的应用。

  鳞角腹足蜗牛的螺壳具有3个螺旋,整体呈压缩的球形。螺壳上具有肋纹和精细的生长线。相比Peltospiridae科的其他物种,鳞角腹足蜗牛的体型要大得多。大部分Peltospiridae科蜗牛的壳长在15毫米以下,而鳞角腹足蜗牛的螺壳宽度通常在9.8~40.02毫米之间,最大的可达45.5毫米,成体的平均宽度为32毫米。

  相比外部的螺壳,鳞角腹足蜗牛腹足上的鳞片似乎有着更合理的用途。一些掠食性海螺(比如芋螺)能伸出鱼叉状的齿舌捕食小鱼,然后注入毒液使其麻痹。生物学家推测,鳞角腹足蜗牛的铁质鳞片可能具有抵挡这种攻击的作用,就像骑士的盔甲可以使标枪转向。

  鳞角腹足蜗牛的鳞片主要由蛋白质组成(贝壳硬蛋白是一个复杂的蛋白质),以覆瓦状排列;相比之下,多板类(包括各种石鳖)的鳞片主要是钙质。不过,在鳞片之间的连接处,我们找不到明显的贝壳硬蛋白生长线。无论是现生,还是已灭绝的腹足类物种,再没有第二种具有这样生长在皮肤上的鳞片;已知的现生动物中,也再没有其他物种能像它们这样利用铁的硫化物,无论是骨骼还是外骨骼。

  鳞角腹足蜗牛的鳞片外表面具有相当多样的附着生物,主要为两类细菌:ε-变形菌和δ-变形菌。这些细菌可能为蜗牛提供了矿物质。有学者认为,鳞角腹足蜗牛会分泌一些有机化合物,促进这些细菌的附着和生长。科学家推测,腹足上的鳞片可能具有保护或解毒的功能,比如保护鳞角腹足蜗牛免受热液口液体的伤害,使它们体内的细菌可以安全地进行化学合成作用;又或者,这些鳞片本身可能就是共生细菌代谢时产生的有毒硫化物沉积的结果。不过,鳞片的真正功能是什么,我们还需要更多的研究。

鳞角腹足蜗牛的“铁盔甲”看起来金属感十足,堪称深海版的“钢铁侠”。鳞角腹足蜗牛的“铁盔甲”看起来金属感十足,堪称深海版的“钢铁侠”。

  体内的细菌工厂

  1977年,科学家在加拉帕戈斯裂谷首次发现了海底热液口。加拉帕戈斯群岛的奇特生物为查尔斯?达尔文的自然选择理论提供了灵感,而群岛海底的热液口又展示了新的生命可能。这些热液口的能量来自地质活动,喷出的液体通常具有很高的酸性,并含有多种金属和硫化氢。硫化氢就是臭鸡蛋气味令人恶心的原因,对生物体具有毒性。不过,也有一些细菌可以通过化学合成的过程利用硫化氢获取能量。在漫长的演化过程中,许多神奇的动物已经和这些细菌形成了互利共生的关系,从而适应了热液口的严酷环境。在总体上寒冷、食物匮乏、生物量极低的深海环境中,深海热液口就像“生命绿洲”,周围聚集了大量无脊椎动物。

  鳞角腹足蜗牛相当于一个化能合成共生作用的功能体,它们体内的内共生细菌主要分布食管腺体(esophageal gland)中,而这个器官的体积甚至比其他蜗牛体内的腺体大1000倍。这些共生菌为鳞角腹足蜗牛提供了能量,很可能是某种糖类(这种细菌也还没有在实验室里培养出来,因此我们只能猜测)。食管腺体就像蜗牛体内的食品工厂,使它们甚至不用去觅食——鳞角腹足蜗牛的消化系统已经退化,不到典型腹足类消化系统体积的10%。这或许就是鳞角腹足蜗牛能长到4.5厘米大小的原因,而那些关系很近,却没有共生菌的蜗牛只能长到1.5厘米甚至更小。与此同时,鳞角腹足蜗牛为这些细菌提供了一个安全、舒适的生存环境。

  奇怪的是,在类似的生活环境中,却出现了3种颜色各不相同的鳞角腹足蜗牛。2001年,生物学家在三个地点发现了鳞角腹足蜗牛,其中两个地点的个体呈深色,第三个地点的个体呈白色。根据遗传学分析的结果,这些蜗牛都属于同一个物种。

  出现这种情况的原因是什么?答案在于与鳞角腹足蜗牛共生的细菌——黑色变种的蜗牛体内具有一些白色变种所没有的细菌。鳞角腹足蜗牛的体表和体内生活着一些有益的细菌,能帮助它们生成铁的硫化物。来自海底热液口硫化物具有很高的毒性,但如果与矿物质结合并形成固体形式,毒性就会消失。在这些化合物毒性减弱的过程中,细菌可能扮演着重要的角色。因此,鳞角腹足蜗牛不仅镀了一层铁盔甲,而且这层铁盔甲还是有毒的。不过,这只是科学家的推测,他们还没有在实验室里培养出这种细菌。也有研究者认为,鳞角腹足蜗牛完全是靠自己生成了铁的硫化物,如果确实如此,那将是前所未有的发现。

  有研究者提出,在食管腺体中蓄养内共生细菌的策略,可能促使鳞角腹足蜗牛在解剖学结构上发生一系列新的改变,从而更加有利于细菌的生长,蜗牛本身的需求反而还在其次。食管腺体的增大、保护性的腹足鳞片、体积较大的呼吸系统和循环系统,以及较高的繁殖能力,都是有利于内共生微生物的适应特征。在极端的化能合成环境中,这些适应特征满足了鳞角腹足蜗牛的能量需求。

现已知三种形态的鳞角腹足蜗牛,从左到右分别来自Kairei、Longqi和Solitaire区域现已知三种形态的鳞角腹足蜗牛,从左到右分别来自Kairei、Longqi和Solitaire区域

  隐秘的海底生活

  2001年,科学家在中印度洋脊的Kairei热液口区首次发现了鳞角腹足蜗牛,随后又在Solitaire区(位于中印度洋脊)和Longqi区(位于西南印度洋脊)发现了它们。其中,Longqi热液口区被指定为模式标本产地,所有的模式标本材料都来自于该区域。虽然三个地点之间的距离很大,但鳞角腹足蜗牛的总分布面积其实很小,不到0.02平方公里。

  尽管早在十多年前科学家就发现了鳞角腹足蜗牛,但直到2015年,研究者才正式发表了对该物种的生物学描述,并确定其学名为Chrysomallon squamiferum。其中属名“Chrysomallon”来源于古希腊语,意思是“金色毛发”,因为它们螺壳中的二硫化亚铁呈现金色;种名“squamiferum”来源于拉丁语,意思是“长有鳞片的”。

  鳞角腹足蜗牛的头部长有两根光滑的、逐渐变细的触角。它们没有眼睛,也没有特化的交接器。它们的腹足呈红色,体积较大,无法完全缩回螺壳。此外,它们也不像其他蜗牛和蛞蝓一样具有上足腺(Suprapedal gland),也没有上足触手。

由鳞角腹足蜗牛和多毛类环节动物、甲壳动物等类群组成的Longqi热液口区生物群落由鳞角腹足蜗牛和多毛类环节动物、甲壳动物等类群组成的Longqi热液口区生物群落

  在 Pelospiridae科中,鳞角腹足蜗牛是目前已知唯一的“同时雌雄同体”物种,这意味着它们同时具有雄性和雌性生殖器官(有些蜗牛属于“阶段性雌雄同体”)。它们具有很高的繁殖力,所产的卵很可能是依靠卵黄提供营养。科学家还不清楚鳞角腹足蜗牛幼体和胎壳的形态(目前采集到最小的未成熟个体已经具有2.2毫米的壳长),但推测可能存在一个浮游扩散的阶段。鳞角腹足蜗牛在人工环境下很难成活,即便如此,它们还是曾在大气压下的水族缸中存活了超过3个星期。

  在食物匮乏的深海热液口环境中,鳞角腹足蜗牛演化出了一种出色的生活策略。海洋上层的有机物质只有极少一部分能落到海底,为了生存,包括鳞角腹足蜗牛在内的许多生物演化出了利用化学能源的能力,在深海热液口附近形成了生命奇观。西南印度洋脊的深海热液口正缓慢扩展,而热液口周围的生物群落对环境扰动十分敏感,并且恢复速率很慢。深海采矿或许会对鳞角腹足蜗牛等热液口生物带来潜在的威胁。

  你或许会问,为什么鳞角腹足蜗牛不迁移到更加宜居的环境?事实上,如果能适应这样的环境,生活其实还不错。举例来说,热带珊瑚礁区域堪称“海洋中的热带雨林”,生活着难以计数的物种,但同时也意味着激烈的生存竞争。而在深海环境,特别是热液口附近,还有一些生态位等待着新生物的到来。

桑提内尔人:世界上最与世隔绝的人群

北桑提内尔岛的卫星图片   北桑提内尔岛的卫星图片

    桑提内尔人(Sentinelese)居住在孟加拉湾安达曼群岛的北桑提内尔岛。从卫星图片看,北桑提内尔岛似乎是一座美丽可爱的小岛,周围保护性的珊瑚礁清晰可见。然而,这座面积约72平方公里的印度洋岛屿可不是随便就可以靠近的,船只在一年中只有两个月能靠近其海岸。这里是桑提内尔人的家园,而他们或许是世界上最与世隔绝的原始部落。

  桑提内尔人不知道什么是金属,他们原始的免疫系统只能适应岛屿的生存环境,外来者的一次咳嗽可能就会要了他们的命。由于桑提内尔人对外界充满着强烈的敌意,印度政府规定任何人禁止进入北桑提内尔岛方圆20公里之内,这另一方面也是为了保护桑提内尔人的生命安全。一个多世纪以来,桑提内尔人依然在顽强地抵制所有外来者和外来文化的入侵。

  桑提内尔人与加洛瓦族、詹吉尔人、翁奇人和大安达曼人同属安达曼人,并与其他安达曼人以及泰国的马尼人、马来西亚的塞芒人、菲律宾的阿埃塔人等皆属于尼格利陀人(Negrito)。尼格利陀人又被称为矮黑人,是东南亚的半游牧民族,也是世界上平均身高最矮的民族之一。不过有目击报告称,桑提内尔人的身高远远超过矮黑人的标准,男性身高达180厘米,女性为160厘米。

  人类学家对桑提内尔人的语言和习俗一无所知。有研究显示,尼格利陀人在安达曼群岛的定居历史已有约6万年。尼格利陀人不是一个单一来源的族群,定义他们的特征包括较矮的身材、深色皮肤和蓬松的卷发。尽管没有近距离接触,但奥地利地理学家和作家海因里希·哈勒曾描述过一位身高1.6米的桑提内尔人,而且这个人明显是左撇子。

  桑提内尔人保持着渔猎、采集的生活方式,没有证据表明他们发明了农业或用火方法。他们已经与安达曼群岛其他岛屿上的部落分离了很长时间,其语言与其他部落有着明显区别。

  目前,我们还不知道桑提内尔人的准确人口数据,估计数量从不到40人到接近500人不等。

  对桑提内尔人物质文化的了解基本来源于20世纪晚期几次接触尝试时的观察。桑提内尔人通过渔猎和采集野生植物来维持生活,没有证据表明他们发展出了农业。据推测,桑提内尔人的房屋可能还是简陋的棚舍式样,没有墙壁,地上有时候会放置棕榈叶和其他树叶,能为三口或四口之家提供足够的生活空间;他们也可能住在另一种更大的公有房屋中,面积可能有12平方米,构造更加复杂,并具有抬高的地面和分隔的家庭区域。

  桑提内尔人应该不掌握先进的金属冶炼技术,因为岛上的原材料极其稀有。不过,有人曾观察到他们很熟练地使用被遗弃或者被海水冲到海滩上的金属物体,并具有一定程度的加工能力,能把铁块磨尖,用作武器或其他用途。在20世纪80年末期,两艘集装箱国际货轮搁浅在北桑提内尔岛的外围珊瑚礁上,桑提内尔人从船上拿走了一些铁制品。

  英国海军军官莫里斯·维达尔·波特曼(Maurice Vidal Portman)在1880年率队探访了北桑提内尔岛,他在报告中写道,“他们的烹饪方式和准备食物的方式类似翁奇人,而不像大安达曼人。”桑提内尔人的武器包括标枪和一种平弓,并能使用不同用途的箭头,用于渔猎和发出警告等。

桑提内尔人堪称地球上最与世隔绝的一群人桑提内尔人堪称地球上最与世隔绝的一群人

 

 与外界接触的历史

  1880年1月,20岁的英国海军军官莫里斯·维达尔·波特曼率领一支武装探险队来到北桑提内尔岛——这是第一次有记载的外来者登岛。作为当地殖民政府的官员,波特曼此行的目的是对岛屿进行考察,并准备带一名囚犯回去。当时英国殖民者对待不友好部落的方式是这样的:先绑架部落成员,然后好好招待并送予礼物,再把他们释放回部落,以此展现英国政府的友好。波特曼的探险队被认为是到达该岛屿的首批外来者。虽然桑提内尔人每当有外来者靠近时就会躲入丛林,但几天之后,波特曼的探险队还是找到了一对年长的夫妇和4个小孩。他们被关起来并带到了安达曼-尼科巴群岛首府布莱尔港。这对年长的夫妇很快就生病死去,可能是由于感染了他们没有免疫力的外界疾病。英国人给了4个小孩一些礼物,然后把他们送回北桑提内尔岛。这些小孩一上岛就很快消失在丛林中。经此一事之后,英国人再也没有尝试与桑提内尔人接触,转而关注其他部落。

  1967年,在人类学家T。 N。 Pandit的主持下,印度政府开始了一系列 “接触探险”(Contact Expeditions)活动,目的是接触管辖范围内众多岛屿的部落居民。Pandit率领的第一支探险队包括了武装警察和海军官员。由于桑提内尔人撤到丛林深处,探险队未能与任何一个部落成员接触。在每次探险的过程中,印度海军的船都停泊在珊瑚礁以外,用小船靠近海滩。在离岸还有一段距离的时候,船员会把礼物扔到海水里,让水流把礼物冲上沙滩。如果桑提内尔人逃入丛林,船员们就会登上海滩,并在离开之前把礼物放在地上。

  1970年3月29日,包括Pandit在内的一群人类学家被困在了北桑提内尔岛和康斯坦斯岛之间。他们的船停在海滩上,一个目击者看到不少人丢下武器,并做出手势让他们把鱼丢下去。一些女性从丛林里走了出来,查看外面的情形。有几个男人走过来捡鱼,但他们的敌意又好像没缓和多少,局面依然紧张。这个时候,一件奇怪的事情发生了。一位女性从丛林中走出来,坐在沙滩上并与一个愤怒的勇士热烈拥抱。其他女性也开始这么做,每个人都选了一个勇士。于是好斗者的数量减少了很多。这一情况持续了相当一段时间,当疯狂的欲望之舞渐渐平息之后,成对的男女走入丛林深处,不过还是有一些男性在守卫着。探险队靠近沙滩,又丢了一些鱼过去,很快几个年轻人就过来把鱼捡走了。此时已经过了中午好一会,队员们只能返回大船。

  1974年初,一支国家地理电影团队来到了北桑提内尔岛,这是对该岛最成功的探险行动之一。这支团队由人类学家组成,目的是拍摄一部名为《寻找人类的人》(Man in Search of Man)的纪录片。团队成员中还有武装警察和一位国家地理的摄影师。当摩托艇冲破珊瑚礁时,桑提内尔人从树林中冲了出来,以一阵箭雨作为回应。小船在弓箭射程之外的海岸停住,穿着加厚防护夹克的警察率先下船,在沙滩上留下礼物:一个迷你的塑料汽车、一些椰子、一只捆好的活猪、一个洋娃娃和铝制的炊具。之后警察回到船上,等待桑提内尔人过来取走礼物。然而,他们等到的回应是又一轮的箭雨,其中一支箭射中了纪录片导演的左大腿。射出这支箭的桑提内尔人骄傲地大笑,并往回走到阴凉处坐了下来,其他人则开始用矛刺死那只猪,并将其和洋娃娃一起埋在沙滩上。之后,所有人都离开了,只带走椰子和铝制炊具。值得一提的是,北桑提内尔岛并不产椰子,顺海流漂来的椰子被桑提内尔人视为珍贵食物。

  还有一些偶然遭遇的记录,比如1980年时,一些讲?nge语的人被带到北桑提内尔岛,希望能与桑提内尔人进行交流。然而,当时的对话短暂而充满敌意,而这些翁奇人也未能辨别出桑提内尔人的语言。

  1981年8月2日,一艘名为“樱草花”号(MV Primrose)的货船搁浅在北桑提内尔岛附近,28名船员被困。第二天早上,船长用广播发出紧急信息,指出有“估计超过50个野人”试图用弓箭和标枪攻击他们。搁浅了两星期之后,所有船员和乘客都成功由救援直升机撤离,而货船的残骸就一直留在珊瑚礁浅滩上。

  20世纪90年代初,桑提内尔人开始允许船只靠近海滩,有时候还会在不携带武器的情况下打招呼。不过,几分钟之后桑提内尔人就会警告外来者离开,他们会做出威胁的姿势并发射没有箭镞的箭。1996年,印度政府选择结束“接触探险”活动,原因是此前在类似项目中接触安达曼群岛南部和中部的加洛瓦人时,出现了数起死亡事件;而且与这些与世隔绝的部落接触,也有带给他们疾病的风险。

  桑提内尔人似乎没怎么受到2004年印度洋海啸的影响,显然他们可以前往更高的山地。海啸发生三天后,一架印度海军的直升机前来查看桑提内尔人的情况,并在海滩上投放了食物。一个桑提内尔人从树林里走出来,向着直升机挥舞弓箭。

  2006年,两位渔民在岛屿附近非法捕捉螃蟹。他们可能因为酒醉不醒,而船的锚又没有固定好,从而被水流带到了北桑提内尔岛的浅滩上。在那里,两个渔民被桑提内尔人残忍杀死。之后,印度海岸警卫队的直升飞机被派去取回尸体,却遭到桑提内尔人用弓箭猛烈攻击,无法降落,最终只能作罢。

  令人担忧的现状

  相比印度安达曼-尼科巴群岛其他与外界有过接触的部落,桑提内尔人的处境还算是不错的。以生活在南安达曼岛上的加洛瓦人为例,由于大安达曼主干道(印度的4号国道)的建成,旅游业的开发,使加洛瓦人与外部世界的接触多了起来,而这一切最直接的后果就是导致加洛瓦人遭受了不止一次的疾病疫情(如1997年和2006年的麻疹爆发)。尽管印度法律禁止旅游从业者接触加洛瓦人,严禁给他们提供食物,甚至禁止给他们拍照,然而,有证据显示这些法律的执行效果堪忧。一部名为《野生人类动物园:观察加洛瓦人》(Human Safari: Observing the Jarawa)的纪录片显示,每天有众多猎奇的游客来到加洛瓦人的家园,与加洛瓦人直接接触,而负有保护职责的当地警察却对此视若无睹。随着与外界的接触越来越多,香烟和酒精也被引入加洛瓦人的生活,使他们的健康状况变得越来越差,而他们又需要用森林家园里的资源来换取这些瘾品。在历史上,加洛瓦人和桑提内尔人一样,都会使用弓箭来驱赶外来者,而如今他们不但学会了基本的印地语,也染上了一些现代人的恶习。有人甚至警告称,加洛瓦人的人口下降极为严重,如果再不采取措施,他们可能很快就将消失。

  桑提内尔人的未来也不容乐观。在这样一个面积狭小的海岛上,有限的人口和近亲繁殖,无疑会使他们的免疫系统变得越来越脆弱。考虑到现代人类在世界许多偏远地方的所作所为,或许让桑提内尔人一直世隔绝才是最好的选择,他们 有权利保护自己免受疾病、酒精和贪婪的侵袭。

蜜蜂怎么了?谈谈“蜂群崩溃综合征”

正在采蜜的西方蜜蜂,拍摄于坦桑尼亚正在采蜜的西方蜜蜂,拍摄于坦桑尼亚

  许多人都听说过蜜蜂蜂群突然消失的新闻,但对其背后的缘由不甚了解。这个问题出现在Quora网站上之后,台湾大学的昆虫学系助理教授Matan Shelomi(中文名为薛马坦)在该问题下做了详细的解答。以下便是他的答案。

  我(以及世界上几乎所有的昆虫学家)经常被问到关于蜜蜂的问题。“它们有麻烦了吗?”“为什么它们正在消失?”“我能做什么?”这些问题倒还无妨,让人恼火的是我得到的答案。“这明显是转基因的问题!”“我们必须禁止新烟碱(neonicotinoid,又称类尼古丁,是一类和尼古丁相关的神经活性杀虫剂的总称)!”“我们该怎么阻止那些正在杀死蜜蜂的企业?”呃,问题在于新闻媒体需要有轰动性的议题和简单易懂的故事,而大多数人想要的是每个问题都有一个答案。然而,生物学的原理并非如此,真相无法归结在一个标题之下。

  前不久我刚听过一场很棒的演讲,演讲者是令人尊敬的梅·贝伦鲍姆博士,他是一位了不起的昆虫学家,也是对“蜂群崩溃综合征”(Colony Collapse Disorder,CCD)的科学阐述者。蜂群崩溃综合征是描述蜜蜂消失现象的专业术语。这里,我将介绍目前蜂群崩溃综合征的研究状态:它的历史、原因,以及我们怎么阻止它。

  总结一下:蜂群崩溃综合征没有单一的原因。没有哪一种化学物质应该被禁止。一种生物的消失也不能归咎于某一家公司。相反地,蜂群崩溃综合征是多个因素共同作用的结果。这些因素的整体要比其中的部分致命得多:对在基因上已经十分脆弱的蜜蜂来说,这是一场在生物学和文化上都难以承受的考验。但是,蜜蜂,以及其他蜂类都不会很快就走向灭绝。

  蜜蜂的历史

  人类采集西方蜜蜂(又称为欧洲蜜蜂,学名:Apis mellifera)的蜂蜜已经有上千年的历史。这种蜜蜂原产于欧洲、亚洲和非洲,是一种很容易被驯养的蜜蜂,不仅用来生产蜂蜜,也能帮助给农作物授粉。还有另一种蜜蜂是东方蜜蜂(学名:Apis cerana),原产于亚洲。在全世界范围内,西方蜜蜂更为常见。几个世纪之前,美国从欧洲引进了蜜蜂,这些蜜蜂很好地适应了当地的植物。没有蜜蜂,某些农产品(特别是扁桃仁,即巴旦木)就无法生产出来。

  不过,养蜂并不容易。与所有的动物一样,蜜蜂也会生病;而且和所有的农民一样,养蜂人会尽一切可能确保蜜蜂的健康,治疗或预防任何可能的疾病问题。最大的蜜蜂疾病问题是幼虫腐烂病(foulbrood),这种细菌疾病会让蜜蜂幼虫变成一团黏乎乎、令人恶心的棕色物体。为了阻止幼虫变成流体,蜂农开始使用抗生素。还有一种被称为微孢子虫(Nosema)的真菌也能摧毁整个蜜蜂种群,于是蜂农们开始用起了杀真菌剂。能带来最严重后果的是瓦螨(学名:Varroa destructor),这种蛛形纲动物能附着在蜜蜂体外,吸食蜜蜂的体液。这已经足够糟糕了(它们的种名“destructor”意思就是“破坏者”),但情况还可以更糟。瓦螨在蜜蜂身上造成的伤口会感染细菌和病毒,包括翅翼变形病毒(deformed wing virus,DWV),这种病毒实际就是由瓦螨传播的。1987年,瓦螨随一只亚洲的东方蜜蜂被偶然带入美国,如今已经传播到世界大部分地方(除了澳大利亚……就目前而言)。为了控制瓦螨,蜂农又开始在蜂房上喷洒杀螨剂。

  过去一个世纪中,养蜂活动也发生了显著的改变。蜂农发现了授粉市场,开始带着蜂房,随农作物种植季的变化前往不同的地方,一开始坐火车,后来自己开货车。然而,蜜蜂依然供不应求。在美国,巴旦木行业协会甚至成功游说了美国国会,同意从澳大利亚进口蜜蜂。这在当时其实是违法的——为避免从国外引入蜜蜂疾病,有法规禁止进口蜜蜂。随着世界的发展变化,越来越多的荒野被开垦为农田,接着农田又变成了城市,蜜蜂的食物量不断减少。蜜蜂的天然食物是蜂蜜和蜂花粉(发酵的花粉团)。野生开花植物的减少意味着蜜蜂的天然食物也在减少,它们需要其他食物来源。为了养活蜜蜂,蜂农们开始给它们喂食含糖溶液,包括含有高浓度果糖的玉米浆。

  走进蜂群崩溃综合征

  2006年,美国许多蜂农报告称蜂群大量消失。不是死亡,而是消失:蜂巢里的工蜂突然消失了,只留下蜂后和幼虫。这实在很不寻常:蜜蜂不会把家园和家庭成员就这么抛弃掉。工蜂消失之后,蜂群也随之崩解。很快,这被证明是一个全国性的问题,并且在欧洲也发现了类似的现象。由于蜜蜂在农业上具有举足轻重的作用,因此美国各地的研究小组开始展开合作,解决“蜂群崩溃综合征”成为了优先课题。

  人们几乎立刻就找到了替罪羔羊。反对转基因生物的组织指责转基因;反对政府的组织指责政府;阴谋论者则表示,政府在喷洒某些东西;外星人劫持论者称,外星人正在带走蜜蜂。有些人怪罪手机,有些人则怪罪奥萨马·本拉登。一个理论称,美国政府正在用苏联的心灵控制技术来对付美国人,以提高对伊拉克战争的支持率,而美国的蜜蜂也因此受到了影响,因为俄罗斯的蜜蜂安然无恙。所有这些指责都言之凿凿,不过我怀疑任何能如此轻易下结论的人会接受那些证明他们错了的证据。事实上,以上提到的所有说法,从转基因到手机,都是错误的。蜂群崩溃综合征不是由转基因、手机、外星人、车辆格栅、紫外线、电磁辐射、恐怖分子、共产主义者、资本家等等造成的。我们找不到支持这些说法的证据(反驳其中某些说法的证据倒是很多),而那些宣传这些说法的人也给不出合理的解释(提示:如果某个网站宣称要向你展示“真实新闻”或者“他们不想让你知道的真相”,那几乎可以确定是不可靠的)。那么,真实的研究结果是怎么说的?

  相关的研究

  巧合的是,在蜂群崩溃综合征被报道之前几个月,科学家发表了蜜蜂的基因组序列。研究人员于是利用这一新信息尝试找出原因。他们对比了健康蜜蜂和崩溃蜂巢里残存个体的基因,看看有什么不同。他们发现问题并不在蜜蜂基因组本身,而是一个搭基因组“便车”的不速之客:以色列急性麻痹病毒(Israeli Acute Paralysis Virus,IAPV)。这种病毒在崩溃蜂巢中的出现频率要远高于健康蜂群。尽管发现于以色列(因此得名),但科学家认为这种病毒是通过澳大利亚的蜜蜂进入美国的。虽然有避免蜜蜂疾病传入的法律,但美国还是从澳大利亚进口了蜜蜂。那么,问题解决了吗?以色列急性麻痹病毒是不是蜂群崩溃综合征的原因?

  答案是否定的。澳大利亚的蜜蜂确实携带着这种病毒,但它们并没有蜂群崩溃综合征。澳大利亚的蜂巢没有崩溃。科学家对1950年的冰冻蜜蜂标本进行脱氧核糖核酸(DNA)检测之后发现,这些美国的蜜蜂也具有以色列急性麻痹病毒,远早于从澳大利亚进口蜜蜂的时间。因此,这种病毒可以排除了。

  我们还发现了一些别的东西。有科学家对蜜蜂体内的微生物群进行了研究。与人类一样,蜜蜂的肠道里也生活着细菌和其他微生物,帮助它们消化食物和做其他事情。关于人体微生物群如何影响人类健康有大量的研究(也有更多的夸大其词和伪科学)。研究结果发现,健康蜜蜂和崩溃蜂群的蜜蜂在微生物群方面没有差别。这一因素也与蜂群崩溃综合征无关。然而,这是第一次有证据表明蜜蜂也会利用微生物……而这些微生物对于最初用于蜜蜂的抗生素能抵抗相当长时间。2005年,一种治疗幼虫腐烂病的新抗生素问世,其他抗生素药品也被引进,这可能影响了蜜蜂体内的微生物群。还有一点是,蜜蜂需要利用特定的真菌来发酵花粉,以获得作为食物的花粉团。

  以下或许是蜜蜂基因组研究中获得的最大发现:蜜蜂天然缺乏免疫力和解毒基因。与其他昆虫相比,蜜蜂缺乏许多天然的防御机制!具体而言,它们具有更少的谷胱甘肽S-转移酶(glutathione-S-transferase)、羧酸酯酶(carboxylesterase)和细胞色素P450(cytochrome P450),这些都是动物(包括人类)用来分解毒素的蛋白质。蜜蜂以花粉和蜂蜜为食,很少接触毒素。在数百万年的演化史中,它们失去了许多这样的防御基因,这意味着所有的蜜蜂在面对疾病和化学制品时,处于天然弱势的地位。

  那么,蜜蜂是如何生存下来的?它们还有少量细胞色素P450和其他解毒基因。此外,它们也有自己的秘密武器:食物。花粉含有一些能正调节解毒和免疫基因的化合物。也就是说,当蜜蜂吃下含有花粉的食物,比如蜂花粉或蜂蜜时,它们会产生更多能抵抗病原体,以及代谢有毒化合物的蛋白质。由于蜜蜂的天然食物是蜂蜜和蜂花粉,二者都含有花粉,因此它们依然具有一定的抵抗力。顺便一提,同样的规律也适用于人类,如果你吃的食物更加健康,你的免疫力也会随之提高。

  现在你已经了解了足够信息,或许可以推断出是什么引起蜂群崩溃综合征了。让我给你一个提示:这不是单一因素引起的。无论你读到什么,如果你发现有任何消息来源只列出了一个原因——某种化学物质、某种杀虫剂、某个公司、某个国家——那你就不必继续看下去了。任何事情,任何时候,都是适用的。科学的运作机制不是那样,蜂群崩溃综合征并没有单一的原因,解决的方法也不是只有一个。任何人如果否认这一点,那很可能就是为了向你灌输某个特定观点,或者还没做好功课。

  以下就为你揭晓答案。

  是什么导致了蜂群崩溃综合征?在众多假说中,只有4种看起来可能性较高:从1895年至今不断增加的杀虫剂用量;某种病原体或寄生虫;由管理措施引起的免疫抑制;以及蜜蜂食物中营养成分的减少。那么,应该归咎于哪个因素?全部。

  2012年,科学家完成了对蜂群崩溃综合征的文献元分析和多次大规模研究。他们没有找到原因,而是发现了几个预示蜜蜂种群即将崩溃的指标。微孢子体真菌并不是指标之一:相反,健康种群具有更高的微孢子体水平!只有瓦螨和翅翼变形病毒是看似有效的指标,而瓦螨更为重要。前面提到,澳大利亚没有瓦螨,也没有蜂群崩溃综合征(尽管亚洲和新西兰也都没有蜂群崩溃综合征,却都有瓦螨)。瓦螨是不是导致蜂群崩溃的原因?

  事情是这样的。想象一个受到瓦螨侵扰的蜂群。蜂农必须在蜂房中施用杀螨剂,而螨虫与细菌或真菌不同,它们在演化上更接近蜜蜂。二者都是节肢动物。同样的化学物质能杀死螨虫,也可能会杀死蜜蜂。尽管目前所用的杀螨剂对螨虫的毒性要大于蜜蜂,但还不存在哪种能杀死螨虫的化合物是对蜜蜂完全无害的,无论是有机农业还是传统农业都是如此。有些非化学技术可以对付瓦螨,但都需要更多的劳作,成本高昂,而蜂农本身已经是在为边界利润工作了:你不会为了赚钱去养蜂!因此,现在的蜜蜂都暴露在杀螨剂之下,而且经常是一次好几种……超过了细胞色素P450的解毒能力。蜜蜂只能产生少数几种能处理杀螨剂的细胞色素P450,一种化合物还好,要是喷洒两种或者更多化合物,它们就无法承受了。

  要注意,我甚至还没有提到蜜蜂可能会在田野里遭遇的杀虫剂,这主要因为它们还不是太大的问题。在最近新闻中常提到的新烟碱,在欧洲已经由于公众压力而被禁止了?这类杀虫剂依然在其他许多没有出现蜂群崩溃综合征的国家使用。事实上,没有哪一种用在农作物上的化学物质——新烟碱、Bt蛋白(喷洒或转基因形式)、可尼丁(clothianidin)——与蜂群崩溃综合征直接相关,而这也是意料之中的。农药喷剂对蜜蜂的影响怎么会有蜂巢喷剂的影响大呢?这讲不通,事实上也确实如此。近期的一项研究显示,美国的蜂巢中,100%的蜂蜡都含有高浓度的杀虫剂,以及其他化学物质——包括我之前提到的抗生素和杀真菌剂。杀死微孢子虫的杀真菌剂可能也会杀死那些将花粉转变为蜂花粉的真菌!即使这不是问题,最终的结果也是使蜂巢积累大量的化学物质:即使禁止了在农作物上使用杀虫剂,蜂巢本身也会受到喷洒或污染。

  你或许会说:“但是在使用杀螨剂的时候蜜蜂并没有死掉啊……”没错!杀螨剂或许有毒,但并不会太可怕!细胞色素450还是能应对大部分杀虫剂——如果蜜蜂健康的话。请记住花粉会刺激细胞色素P450的生成,但蜜蜂的食物已经不能再提供足够的花粉。前面提到的栖息地破坏意味着自然界没有足够的花粉供蜜蜂食用。相反,人们用糖溶液或玉米浆喂养蜜蜂,而这些都无法像花粉一样激发它们的免疫力。举个例子说明一下情况有多么糟糕,法国的养蜂人曾经在见到蓝色蜂蜜的时候惊慌失措。最后发现,他们的蜜蜂没有采集花蜜,而是以附近一家M&M工厂的含糖废水为食,从中吸取了蓝色染料。无独有偶,美国纽约一位养蜂人的蜜蜂产出的是红色蜂蜜,他发现他的蜜蜂原来是在一家马拉斯奇诺樱桃工厂觅食。没有花朵提供食物,蜜蜂的营养状况就会十分糟糕。在营养不良的情况下,蜜蜂的免疫力也很低下……而当你考虑到长途运输的压力,大部分蜜蜂也都不会获得很好的食物,你就会明白为什么蜜蜂会生病。

  “慢着,那么那些吃蜂蜜的蜜蜂呢?”你可能还会这么问。你说得对,很多养蜂人选择用蜂蜜而不是玉米浆来喂养蜜蜂……或者说他们以为是这样。目前一个主要的问题是,大部分在售的蜂蜜其实不是真正的蜂蜜。问题症结在于:2000年,美国对某些国家产的蜂蜜课以反倾销税,导致进口蜂蜜减少,由此导致从马来西亚、印度、越南和印度尼西亚等国家进口的蜂蜜增加。问题是这些国家都没有商业性的蜂巢。我们怎么能从不生产蜂蜜的国家进口蜂蜜呢?“洗蜂蜜”。有些蜂蜜会被贴上其他国家的标签,然后避开美国的反倾销税。为了不被查到,他们会用超滤器将蜂蜜中的花粉过滤掉(因为可以用花粉追溯蜂蜜的原产国),并用玉米浆掺入其中。因此,你所看到贴着“蜂蜜”标签的东西可能并不是蜂蜜,而由于这些“蜂蜜”不再含有花粉,因此对蜜蜂的健康并没有什么益处。

  总结一下,蜂群崩溃综合征的发生是因为蜜蜂本身对疾病和化学物质的免疫力天然不足,而这两种因素对蜜蜂的影响越来越大,而且经常一起作用;此外,由于营养不足的食物和充满压力的生存条件,蜜蜂的免疫力变得更糟。没有单一的原因,同样也没有单一的解决方法。

  我们能做什么?

  首先,让我向你保证,蜜蜂终将度过危机。蜜蜂并没有灭绝的危险,即使是西方蜜蜂。野生蜜蜂其实活得好好的,消失的只是商业养殖的蜜蜂……而它们消失的速率也在降低!不同年份的下降速率不同,有些年份还会出现蜜蜂总数量的上升。举例来说,2012-2013是蜜蜂最艰难的一年,许多蜂巢遭受了蜂群崩溃综合征。原因?那一年美国中西部发生了一场旱灾,大量开花植物死去。营养不足加上缺乏水分,以及艰苦的生活方式,使蜜蜂难以承受自然和人为的压力(包括病原体和杀虫剂),死亡的可能性更高。其他年份里,蜜蜂的日子要好过得多。

  不过,这些对于失去蜂群的养蜂人来说算不上什么安慰。我们能做什么来帮助他们吗?两件事。首先是在你的花园里种一些蜜蜂喜欢的花,如果你有花园的话。在你的住宅附近为蜜蜂提供食物来源,可以减少一些栖息地丧失对蜜蜂的损害。其次,如果可以的话,请购买本地的蜂蜜,以支持本地的养蜂人。去农贸市场,或者找一些养蜂的人购买蜂蜜。这会帮助他们度过难关,你也可以保证自己买到的是货真价实的蜂蜜,而不是经过处理的产品。

  那更大的问题呢?好吧,在找到对蜜蜂完全无害的杀螨剂之前,我们还将继续使用现有的产品。瓦螨是元凶之一,必须加以控制,虽然解决它们的方法也是造成问题的另一个原因。至于禁止化学产品,无疑是个糟糕的主意。想一下新烟碱:就算你禁止了那些新烟碱类杀虫剂(就像在欧洲),然后呢?农民还是会使用其他杀虫剂,比如更早的产品拟除虫菊酯(pyrethroids)——比新烟碱的毒性更高!通过禁止特定的杀虫剂,欧洲可能会使蜂群崩溃综合征问题变得更加严重。如果你想从公共政策的角度解决问题,我的建议是阻止栖息地破坏,这个主意总是没错的。

  这也就说到了我最后的论点。你最佳的选择就是获得足够的信息……这并不是说去寻找某个信息来源,然后盲目地相信他们。获取足够信息的意思是,你应当不断寻找新的信息,并且从不满足。这意味着当新的故事冒出来时,你要一直质疑,特别是当那个故事看起来太像真的,或者宣称能“最终”回答某个问题的时候。

  获取足够信息还意味着不能把某个阴谋论网站或某个反农业技术博客,甚至是某篇新闻报道,与真实的科学数据混淆起来。此外,你也不能过于相信某一篇科学论文,特别是当这篇论文只是单次研究而不是元分析的时候。科学一直处在不断的变化中:想想从2006年至今,我们对蜜蜂的了解改变了多少,有多少假说被验证、被挑战,然后随着新证据的出现而被抛弃。甚至我现在所写的这些有一天也可能改变(虽然现在还是被广泛接受的)。蜜蜂的故事还没有结束,但我打赌这个故事不会有什么激动人心的大结局,或者出现什么高潮,而是会错综复杂,充满着彼此交织的角色;故事的最后,或许不会过于引人注目,但应该会更令人满意。

第二部分:蜂群崩溃综合征的研究历史

        2015年11月8日,星期一早晨的明尼阿波利斯(美国明尼苏达州的城市),我很早就醒来,因为不想错过早上八点时梅·贝伦鲍姆教授在美国昆虫学会年会上的演讲。在一场关于蜜蜂蜂群崩溃综合征(colony collapse disorder, CCD)的研讨会上,贝伦鲍姆教授作为开场演讲嘉宾,与到会的科学家分享了最新的研究发现。她的演讲题目是《关于CCD的ABC和XYZ》,涵盖了关于该课题在9年时间内的584篇论文。我丝毫不怀疑她阅读了每一篇论文。她将所有这些历史和数据浓缩成了16分钟的演讲,几乎没有让人停下来喘息的时间。尽管现在蜂群崩溃综合征已经不再像几年前那样经常占据新闻头条,但科学家对蜜蜂的兴趣却更胜以往。因此,对于那些感兴趣的人,这里对贝伦鲍姆教授的演讲做了总结,并介绍了蜂群崩溃综合征的历史和现状。

  一切都开始于2006年10月,当时一种被称为“秋季衰退病”(fall-dwindle disease)的蜜蜂消失现象开始被注意和报道。健康的蜂群突然崩溃,工蜂没有一下子死亡很多,而只是消失不见了。都不见了。没有尸体。幼虫被抛弃在蜂窝中,食物完好无损地储存着,甚至蜂后都被抛弃在蜂巢里。没有相当规模的工蜂数量担任维持工作,蜂群最终会全部死亡。这种奇怪的现象究竟是什么,蜜蜂离开蜂巢之后会在哪里的荒野死去?在2007年2月发表的一篇文章中,这一现象被重新命名为“蜂群崩溃综合征”。紧接着,美国各地都传来了蜂群崩溃的报告,《纽约时报》(New York Times )的商业版块也报道了这一事件,并且在不到一个月时间里举行了一次美国国会小组委员会。在这个时候,欧洲也注意到了同样的现象。到了4月,媒体对贝伦鲍姆所说的“蜜蜂末日”(Apispocalypse,词源来自西方蜜蜂的学名Apis mellifera)发了狂,任何太阳底下的东西,太阳以外的东西,以及太阳本身都被指责是造成蜂群崩溃的元凶。为了把真相与阴谋论和优先研究分离开,美国农业部举办了一次会议,并迅速排除了所有错误的理论,包括手机、宇宙射线、转基因农作物、移民、奥萨马·本拉登、光照派、无线网络、风力涡轮机、核电厂、外星人、太阳耀斑、飞机尾迹,以及蜜蜂被公路上的汽车撞到等。

  在转基因和外星人都被排除之后,还有哪些原因剩下?有4个依然很有可能的原因。一是杀虫剂,最受关注的是目前主流的新烟碱类杀虫剂;二是病原体:一些导致蜜蜂生病的细菌或寄生虫,可能还没有全部被发现;三是管理和养蜂手段导致的免疫力抑制:这些蜜蜂在用货车运送到全国各地的过程中遭受了很大的压力;第四点,不断下降的营养供给:栖息地丧失意味着花朵越来越少,供蜜蜂食用的花粉和花蜜也就越来越少,因此蜂农必须借助含糖的水或玉米糖浆。你可以将以上这些记为4个“P”:杀虫剂(Pesticides)、病原体(Pathogens)、养蜂手段(Practices)和(缺少)花粉(Pollen)。这种记忆法是我自己的发明,不是贝伦鲍姆博士的,如果觉得有帮助,请尽管使用。如果你不喜欢的话,还可以尝试记住4个“D”:药物(Drugs)、疾病(Diseases)、干扰(Disturbance)和食物(Diet)。现在科学家已经知道了从哪里着手,并开始努力解决问题。凑巧的是,在“秋季衰退病”首次被发现的同一个月,科学家发表了完整的蜜蜂基因组序列,这使未来的工作变得更加容易一些。

  2007年9月,研究者取得了第一个突破:从崩溃蜂群的蜜蜂基因组中鉴别出了一种病毒,称为以色列急性麻痹病毒(Israeli Acute Paralysis Virus,IAPV)。这种病毒发现于以色列,其最初起源尚不明确,不过有人归咎于从澳大利亚进口到美国的蜜蜂种群曾被该病毒污染。消失的蜜蜂是否因为感染这种病毒而离开蜂巢呢?答案是否定的。一个月之后,科学家对1950年的冷冻蜜蜂标本进行了检测,发现也含有以色列急性麻痹病毒。无论该病毒从何而来,它都已经在美国存在了很长时间,远早于蜂群崩溃综合征的出现。难题的解决必将困难重重。(这个例子也表明了保存很久之前的科学标本有多么重要:你永远不知道什么时候或者什么原因会有人用到它们!)

  那么新烟碱呢?如今欧洲人对农业技术发展越来越焦虑,他们迅速将所谓“疯狂蜜蜂病”(Mad Bee Disease)归咎于新烟碱类杀虫剂。然而,一项对108个崩溃蜂群的研究发现,只有3个蜂巢中残留着新烟碱类杀虫剂。其中的关联并不明显。不过,就在同一项研究中,科学家在全部崩溃蜂巢中都发现了杀螨剂。蜂农会直接向蜂巢喷洒杀螨剂,以控制寄生在蜜蜂身上的瓦螨。然而,这些杀螨剂事先都经过了检测,被认为不会伤害蜜蜂——在单独使用的时候。2009年,研究发现这类杀螨剂中有两种具有协同效应,即单独使用时不会致死的剂量在二者结合使用时就会产生较严重的毒性……两种其实并不多:2010年3月,对蜜蜂体内121种代谢产物的分析显示,有6种来自杀虫剂,大部分为杀螨剂。

  为什么会发生协同效应?基因组计划揭示,蜜蜂对毒素的抵抗能力天生较弱:它们只有3种不同的解毒酶,属于细胞色素P450超家族。在对杀螨剂解毒时,这3种酶显然忙不过来,因此协同效应几乎是肯定会出现的。尽管蜜蜂的细胞色素P450与其他昆虫体内的具有相同效力,但数量上的劣势意味着蜜蜂很难同时应付多种杀虫剂(相比之下,人类在这方面就厉害得多,一共拥有57种细胞色素P450超家族的酶)。那么,蜂群崩溃综合征的起因就是蜜蜂无法解毒这些杀虫剂“鸡尾酒”吗?可能不是。2009年1月的一项研究发现,解毒基因的表达(对一个基因使用程度的测量)在崩溃蜂群和健康蜂群里是一样的。一方面崩溃蜂群的蜜蜂应对杀虫剂的能力还说得过去,另一方面健康蜂群的蜜蜂面临的麻烦也同样多,要导致蜂群崩溃还需要其他某些东西。一个假说被否定之后……另一个假说又出现了。该研究还发现相对健康蜂群,崩溃蜂群具有大量的病毒,比如“类小RNA病毒”(picorna-like virus)。现在,病毒已经成为研究热点。到了2009年8月,仍然有许多病原体与蜂群崩溃综合征联系在一起。2010年10月,两种全新的病毒——属于RNA病毒——被发现只存在于崩溃蜂群。2011年6月,科学家又发现了4种全新的RNA病毒。

  那么,我们要如何保护蜜蜂免受这些病毒的侵袭?类小RNA病毒通过瓦螨传播,因此我们还是得用杀螨剂保护蜜蜂……而对于RNA病毒,由于它们在其他传粉昆虫中也都有发现,科学家最终认为这些病毒是通过花粉本身传播的!蜂群崩溃综合征看起来似乎无法解决……但是到了2010年12月,新的研究指出,蜂群崩溃综合征完全不是问题!那一年有大量的蜂群消失,但并不是因为蜂群崩溃综合征。研究人员发现饥饿和恶劣天气才是最大的原因。是这样吗?

  2012年1月,科学家发现了一个新的蚤蝇物种。蚤蝇又被称为驼背蝇,是一类小型的寄生蝇。这种新发现的蚤蝇与蜂群崩溃综合征完全没有关联,而媒体之所以将二者联系起来,主要是因为它们能寄生在蜜蜂的大脑中,并将蜜蜂变成“僵尸”。令人毛骨悚然,但关系不大。那么肠道细菌呢?已经有研究显示,全世界的蜜蜂拥有几乎相同的肠道细菌,就连熊蜂也是。再一次地,没有证据表明这与蜂群崩溃综合征存在联系。还是让我们回到4个“P”吧。

  到了2012年2月,科学家已经有了预示一个蜂群即将崩溃的标志物:瓦螨;微孢子虫(Nosema),一种寄生真菌;病毒感染,许多可能的病毒;以及……其他一些因素。只有前三个因素还不足以引发蜂群崩溃,因此还得加上其他一些东西。这些因素之间共同的关联是瓦螨:它们能传播病毒,也能传播微孢子虫(也传播病毒),而它们本身也足以致命,并且是几种有协同效应的杀螨剂的使用原因。表明瓦螨破坏力的证据越来越多,但也有一些好消息:2012年的一项研究发现,越冬时的蜂群损失正在下降。蜂群崩溃综合征正在好转,现实情况是这样吗?

  大约在2012年1月时,在瓦螨的证据越来越多的同时,突然间,新烟碱类杀虫剂又闯入了研究者的视线。我们不是证实它们不是元凶了吗?没有完全证实,因为新的研究显示,新烟碱类杀虫剂可能会被植物从土壤里吸收到体内,或者通过其他媒介被蜜蜂接触到——不是通过蜂巢或直接接触。从1月到3月,一系列论文指出,新烟碱会导致蜜蜂更容易被微孢子虫感染。因此,可以说杀虫剂和病原体也在“协同作用”了。类似蜂群崩溃综合征的现象如今也开始在熊蜂和其他以土壤筑巢的蜂类中出现,尽管没有人知道出现了多久。我们应该禁止新烟碱类杀虫剂吗?不,因为欧盟已经这么做了,但并没有效果。替代新烟碱的杀虫剂也没有更安全。2013年2月,研究者发现喷洒在农作物上的杀虫剂,与喷洒在蜜蜂身上的杀螨剂也会发生相互作用,即存在更多的协同效应。到了11月,杀真菌剂也成为指责的对象……接着,人们甚至还指责溶剂!这些溶剂由活性较低、无毒、无杀真菌效力的化合物组成,在与杀真菌药物混合之后,有助于更好地施药(可以把一杯柠檬水中的水当成溶剂,用来承载柠檬汁和糖)。如果溶剂也能引起协同效应,那就没什么东西是安全的了!

一只在蜜蜂幼虫上的瓦螨
一只在蜜蜂幼虫上的瓦螨
 

  杀真菌剂还有另一个问题:它们会杀死蜜蜂在制造蜂花粉时所必需的“好”真菌。蜂花粉是花粉和蜂蜜的混合物,蜜蜂用其喂养幼蜂和蜂巢中的其他成员。因此,它们的食物现在也受到了威胁,这就说到了其他的“P”。科学家发现,食用花粉的蜜蜂比不食用花粉的蜜蜂更能忍耐杀虫剂。2013年3月,科学家发现,在所有花粉中存在的一种化合物——对香豆酸(p-Coumaric acid)——能够能正调节(提高活性)蜜蜂体内解毒和免疫基因(需要说的是,该物质对人类无效,所以还是把花粉留给蜜蜂吧)。我们现在可以确信,给蜜蜂喂食玉米糖浆或玉米糖对它们的免疫力是不利的……但是蜂农们又有什么办法?许多曾经开满鲜花的荒野如今已经变成停车场或高尔夫球场。现在,我们可以很确定地将栖息地丧失视为引发蜂群崩溃综合征的中间因素:它不会直接杀死蜜蜂,只是让其他一切变得更糟糕。没错,这又是协同效应。除此之外,还有研究发现,任何驱使蜜蜂在一年中过早地去寻找食物,或者让它们在还太年幼的时候采蜜(通常是年龄较大的蜜蜂从事觅食工作)的压力,都可能导致蜂群崩溃综合征。

  那么现在我们到哪了?蜂群损失并没有减少多少:可怕的2013年很快就让2012年的好消息黯然失色。因此,尽管综合征还在,甚至媒体的关注度也在下降,但仍然有好消息:对传粉媒介,包括蜜蜂之外的其他物种,的研究空前丰富。我们在过去九年里获得的蜜蜂知识,要比过去几十年里加起来的还多!全世界的大学都在聘用农业学家(蜜蜂专家),世界各地的人们对蜜蜂的思考也远胜于其他生产食物的生物。假如说今天的人杀死一只蜜蜂的可能性要远小于九年前,那我一点都不惊讶。

  对于那4个“P”呢?它们还依然存在。杀虫剂(Pesticides)杀死蜜蜂;病原体(pathogens)到处都是;引起压力的管理手段(practices)和缺乏优质花粉(pollen)和花蜜来源,都会削弱蜜蜂抵御化学物质和传染病的能力。螨虫和杀螨剂,病毒和瓦螨,疾病和森林砍伐,所有这些因素都在相互作用。正如美国农业部“蜂群崩溃综合征指导委员会”在2009年所说的,“没有发现任何单一因素具有足够根据作为致病因子”;在2010年又说,“情况越来越明了,(蜂群崩溃综合征)不能归咎于任何单一的因素”。一切都是协同作用:蜜蜂受到来自各个方向的攻击,而这些因素的整体威力又远远超过其单独的作用。

  我们能做些什么?不需要禁止任何东西:涉及的化学物质太多了,有些物质如杀螨剂,所对付的瓦螨显然要比它们的毒性可怕得多。如果你知道任何能清除瓦螨,却又不会杀死蜜蜂的方法,那就太棒了。但这还不够,因为即使是花粉也能传播病毒。虽然无法阻止蜜蜂生病,但我们能帮助蜜蜂变得更加健康,更加有可能恢复蜂群。我们已经着手处理影响蜜蜂的一个因素:栖息地丧失。阻止栖息地的继续破坏,并逆转已经造成的结果。种植花圃,而不是精细修剪的草坪;保护森林和草原;或者在住宅附近放多几个花盆,种一些蜜蜂喜欢的花卉。你可以敦促本地政府部门在公共空间种植更多的花卉,例如在道路两旁或环形交叉路口。你甚至可以自己建立一个蜂巢!此外,请善待蜜蜂。如果你在某个地方遇到一群“不识趣”的蜜蜂,不要惊慌,也不要用药物喷洒它们。你可以联系本地的养蜂人或者其他可能认识养蜂人的机构,很快就会有人前来捕捉这群蜜蜂,并建立一个新的蜂巢。这些蜜蜂可以转移到其他地方而不必被杀死。

  此外,请记住蜜蜂并不是唯一的传粉者,也不是唯一的蜂类。西方蜜蜂(Apis mellifera)并非原产于美国或澳大利亚,或世界其他许多地方。原生的蜜蜂、熊蜂、集蜂科蜜蜂、木匠蜂等等,可能都是比驯养的蜜蜂更有忍耐力的传粉者。虽然这些原生蜂类本身也受到栖息地破坏和疾病等因素的威胁,但如果蜜蜂的情况没有改善,它们也可以作为备用计划。在那之前,新的研究结果会一直不断涌现,科学家也会努力为蜜蜂研究筹集资金——这一机制在过去几年里很成功,未来也会继续。

  总结一下,我们很可能永远无法排除四种因素中的任何一个,因为它们都是真实存在的。不过,我们还是会尽一切可能找出明确的原因、更好的解决措施和更安全的预防手段,当然还要努力让蜜蜂拥有足够的天然食物。与此同时,请继续关注蜜蜂!正是你的兴趣和关注驱动着科学发现,并且为新的蜜蜂研究提供资金,所以,不要让你的好奇心崩溃!

 

原文链接:https://www.quora.com/profile/Matan-Shelomi/Posts/Whats-the-Deal-with-the-Bees-part-2-A-History

如果我们能消灭地球上所有的蚊子,结局会怎样?

消灭地球上的蚊子会带来什么结果?这个看似简单的问题其实并不简单消灭地球上的蚊子会带来什么结果?这个看似简单的问题其实并不简单
 

  如果我们能消灭地球上的蚊子,那将带来什么样的结果?这个问题最初出现在Quora网站上,台湾大学的昆虫学系助理教授Matan Shelomi(中文名为薛马坦)在该问题下做了详细的解答。以下便是他的答案。

  这是我在Quora上最常被问到的问题类型,提问的形式多种多样,比如“蚊子存在的意义是什么?”、“蚊子在生态系统中扮演着什么角色?”、“我们能否消灭所有的蚊子?”、“我们如何完全摆脱蚊子?”、“有没有人尝试消灭所有蚊子?”,以及“为什么我们还没有完全消灭蚊子?”等等。除了蚊子,我们还会看到关于其他动物的类似问题,包括苍蝇、蟑螂,或者还有臭虫、跳蚤,以及不是昆虫的蜱虫。把这些问题合起来,或者一一回答这些问题,需要耗费无数的时间。因此,我决定写一篇文章,把所有这些问题的答案呈现出来。我们将把焦点放在蚊子上,因为这种动物的情况也能适用在其他所谓的害虫身上。

  听到人们如此迫切地希望一个物种灭绝,而不是阻止它们灭绝,是不是有种很奇怪的感觉?这种仇恨可不仅仅是因为蚊子很招人烦。事实上,蚊子堪称世界上对人类最为致命的动物,而且我是把人类本身也算了进去。它们传播,或携带诸如疟疾、黄热病、登革热、基孔肯雅热、西尼罗河病毒和寨卡病毒等疾病和病原体。每一年,所有这些疾病造成的死亡人数超过战争和杀人案件的总和。消除这些疾病将拯救数以百万计的生命,同时也能减少许多苦痛和残疾。如果没有蚊子,这些疾病将不会存在……但是,为什么会这样呢?

  我们需要杀死所有蚊子吗?

  不,因为并不是所有蚊子都是有害的。蚊子属于昆虫纲双翅目之下的蚊科(Culicidae),包括了超过3500个物种!雌性通常会在平静水体中产卵,从浅水池塘到花盆积水,从供鸟嬉戏的水盆到地上的积水,都是它们孕育后代的地方。蚊子幼虫在水中生长,以微生物、小颗粒或藻类为食。它们会在水中化蛹,成虫最终会离开水面飞走。

  蚊子成虫吃什么?大部分物种是素食主义者。它们吸食花蜜、植物汁液和果汁,并且从不吸血。消灭这些物种并没有必要;事实上,这还会带来负面效果。在无害的巨蚊属(Toxorhynchites)中,有超过90个物种。顾名思义,这类蚊子具有巨大的体型,而它们也是我们的“同盟军”:它们的幼虫以其他蚊子的幼虫为食!由于它们对人类有所益处,因此在我们尝试任何消灭“坏”蚊子的方法时,应当确保这些大蚊子安然无恙。

  在以吸食血液为生的蚊子种类中,只有少数(200种左右)吸食人血,其他的则以鸟类、蜥蜴或小型哺乳动物的血液为食。在能以人血为食的蚊子中,也不是所有种类都携带病原体,甚至在那些携带疾病的物种中,也不是所有种群都是有效的病原体载体。而且,不同的物种携带着特定的疾病。例如,引起疟疾的疟原虫就几乎只由疟蚊属(Anopheles)的种类传播。在大约460种疟蚊属蚊子中,只有大约100种能携带5种左右可感染人类的疟原虫(超过200种疟原虫是感染其他动物的)。在这100种蚊子中,只有30到40种能成为疟原虫属生物的寄主,给人类带来致病风险;其中,又只有屈指可数的几种疟蚊偏好人类血液作为食物来源,并只有5种能携带恶性疟原虫(学名:Plasmodium falciparum)——引发的疟疾最为危险,症状最严重,死亡率也最高。在这5种疟蚊中,最危险的是冈比亚疟蚊(学名:Anopheles gambiae),虽然这个物种本质上其实是由至少7个物种组成,但那又是另一个故事了……总而言之,如果你真的想要消灭疟疾,那只有很少几个物种关系最大,而首先必须把重点放在冈比亚疟蚊上。单单消灭这个物种(集合)就将拯救数百万人的生命。

  其他少数几个属的蚊子也会携带病原体,即所谓的“虫媒病毒”(arboviruses,即所有必须通过吸血性节肢动物媒介而感染脊椎动物的病毒)。伊蚊属(Aedes)的许多物种,尤其是埃及伊蚊(学名:Aedes aegypti)和白纹伊蚊(学名:Aedes albopictus),都是登革热病毒、黄热病病毒、基孔肯雅热病毒、西尼罗河病毒、拉克罗斯病毒(一种脑炎病毒),以及一些动物病毒如西部马脑炎病毒的传播载体。这些病毒中有许多还可以通过库蚊属(Culex)和绒蚊属(Culiseta)传播,前者还能传播鸟疟疾,后者则极少叮咬人类;同样能传播其中某些病毒的还有黄蚊属(Ochlerotatus)——不过这个属名还存在争议,我就不展开了。趋血蚊属(Haemagogus)能传播黄热病病毒和一些较为罕见的病毒,如马亚罗病毒(Mayaro virus)和伊利乌斯病毒(Ilheus virus)。沼蚊属(Mansonia)能传播一些虫媒病毒,但更主要是传播在亚洲和太平洋地区导致丝虫病的丝虫。其他的属也有一些携带丝虫的物种,能传播寄生狗和其他动物的犬心丝虫,以及引起人类象皮病(又称淋巴丝虫病)的几种丝虫。

  为什么某些物种相比其他物种是更好的疾病载体?答案是,蚊子并不仅仅是携带疾病:它们也被感染了。当蚊子将被感染的血液吸入体内时,它们的中肠也会受到感染。病原体会在中肠内增殖,然后喷涌到体腔,最终在那里感染唾液腺。整个过程可长达两周时间,取决于疾病的种类。当蚊子叮咬下一个受害者时,病原体就会随着唾液注入受害者体内。这也是艾滋病病毒无法经过蚊子传播的原因之一:病毒无法感染蚊子的中肠,而是直接被消化了。不同的蚊子种类可能会对某些特定的病原体免疫,中肠或唾液腺具有抵抗力,或者只是在病原体完成增殖周期并到达唾液腺之前就因为某些自然原因死掉。受感染的蚊子有时确实会寿命较短,因此演化机制会让这些病原体变得小心翼翼:它们不能在自己完成繁殖并注入新的宿主之前杀死蚊子。

  总结一下,我们不需要杀死所有的蚊子,只需要处理那些传播疾病的物种。

  蚊子为这个世界做了什么?

  除了传播疾病,蚊子的存在还有什么其他意义?更重要的是,那些传播疾病的物种是否扮演着某种角色,使它们值得存在于我们周围?

  让我们从幼虫开始。蚊子幼虫,也就是孑孓,生活在水中,以各种碎屑为食,它们确实在某种程度上能保持水体清洁,但其他许多不传播疾病的生物也能做到这点。孑孓几乎不会摄食任何重要的东西……除了巨蚊属的幼虫会以其他蚊子的幼虫为食,前面已经提到,我们应当避免让这个属的蚊子遭到“种族屠杀”。

  孑孓会被哪些生物吃掉?其他水生幼虫,比如蜻蜓和豆娘的幼虫、一些龟类、较大的蝌蚪,以及鱼类。最著名的孑孓捕食者是食蚊鱼(学名:Gambusia affinis)和霍氏食蚊鱼(学名:Gambusia holbrooki)。这两种鱼原产于北美洲,已经被普遍引进到世界各国,用于控制池塘和水潭的蚊虫。一些地方的政府还免费发放这两种鱼,认为它们能吃掉蚊子幼虫,而不是其他生物。这种方法在世界一些地方效果明显,特别是在俄罗斯城市索契附近,那里原本是疟疾热点;2010年,当地人还竖起了一座食蚊鱼的雕像。

  然而,认为这两种鱼只吃蚊子幼虫的观点并不准确,它们的名字也是一个误会。霍氏食蚊鱼其实更喜欢吃浮游生物、藻类和有机碎屑(与孑孓的食物相同),通常在没有其他选择时它们才会捕食孑孓等无脊椎动物。食蚊鱼是更厉害的掠食者,每天能够吃下相当于自身体重一半到一倍半的蚊子幼虫。不过,它们无法只依靠蚊子存活,还必须摄食浮游生物和其他昆虫等食物,否则就会营养不良并发育迟缓。虽然被称为“食蚊鱼”,但蚊子在这两种鱼的日常食谱中只占据很小的一部分。更糟糕的是,它们对其他鱼类极其凶猛,而那些鱼类本身在捕食蚊子上也同样高效。在澳大利亚,从20世纪20到30年代人为引进的食蚊鱼在水中横行霸道,欺压并消灭了当地鱼类和蛙类,使后者的数量降低到很低的程度,以至于蚊子的数量反而上升——因为掠食者的总数变少了。被外来食蚊鱼吃掉或杀死的本土蛙类和鱼类,很多本身就是重要的物种,如今却面临灭绝的威胁,这表明即使食蚊鱼真的能捕食蚊子,它们的引入也很可能成为严重的问题。索契之所以没有遭受这样的灾难,是因为那里一开始就没有多少会受到食蚊鱼威胁的本土动物类群。引入其他鱼类,比如鲶鱼甚至金鱼,都是有可能取得和食蚊鱼同样效果的。很显然,食蚊鱼属(Gambusia)并不是全球蚊子消灭行动的可靠帮手,但另一方面,我们也不用担心孑孓灭绝会导致鱼类消失的问题,因为没有一种鱼类(或其他动物)是单一地以它们为食。

  那么对于蚊子成虫呢?以它们为食物的生物种类就更加多样了,从鱼类到蛙类,从蝾螈到蜥蜴,从捕蝇草到鸟类和蝙蝠,更不用说其他昆虫了……这里顺便说一下,大蚊(大蚊总科的昆虫)有时被称为“蚊鹰”(mosquito-hawk),但它们其实不吃蚊子,事实上它们甚至不吃任何东西:大蚊成虫寿命很短,不进食,交配繁殖后就完成了一生的使命。真正吃蚊子成虫的昆虫包括蜻蜓和豆娘,它们的水生幼虫同样会捕食孑孓和孑孓发育成的蛹。它们是蚊子一生的天敌。

  这些自然捕食者能否用来消灭蚊子?而蚊子的清除是否会损害这些捕食者?不能,不会。再说一次,蚊子并不是所有这些生物的唯一食物来源。以一种体型较大的动物来举例,紫崖燕(学名:Progne subis)是一种外形十分漂亮的美洲鸟类,常常被认为是一种应对蚊子的生物防治物种。但是,它们的作用可能被高估了。许多研究者对这种鸟类的摄食行为进行了观察,发现蚊子在它们的食谱中所占比例并不大,而它们的摄食区域和时间也不与媒介蚊活跃的地点和时间重叠;而且,释放紫崖燕也并不会对当地的蚊子种群造成很大的影响(尽管也有些研究提出相反的意见)。此外,与食蚊鱼一样,紫崖燕也会带来适得其反的效果,因为它们会捕食其他掠食性昆虫,比如蜻蜓,以及从甲虫到蜜蜂等众多有害或有益的昆虫。除了蚊子、摇蚊、蠓、和苍蝇之外,蜻蜓本身也喜欢捕食蜜蜂和蝴蝶。蝙蝠也是如此,蚊子在它们的食物中只占不到1%。你能指责这些捕食者吗?蚊子体型微小,还不够塞牙缝的,而一只圆滚滚的甲虫或蛾子显然要更有营养得多。

  如果这些替代食物来源不存在呢?世界上有没有哪些地方蚊子是占优势地位的昆虫?有,在北极。虽然大部分昆虫喜欢温暖的气候,热带地区也确实拥有最高的昆虫多样性,但实际上,北极苔原才是世界上蚊子问题最严重的地方,因为那里为蚊子繁育提供了完美的“孵卵器”。北极苔原的土壤在冬天近乎冻结,而夏天土壤解冻,使整片地区成为巨大的蚊子繁殖场。蚊子在这些地方组成庞大的群体,形成一团团浓密的黑云。科学家认为,蚊子是这些地区鸟类最重要的食物来源……不过也有人表示反对,认为摇蚊(摇蚊科Chironomidae的种类)实际上在当地鸟类的食谱中占更大比例,并且会填补蚊子消失后留下的空白。因此,如果蚊子被消灭,那北极的鸟类将最可能成为(或许也是唯一)被波及的生物。幸运的是,北极地区占优势地位的蚊子是撮毛伊蚊(学名:Aedes impiger)和黑足伊蚊(Aedes nigripes),二者都不是人类疾病的传播者。因此,如果我们的目标是对抗传播疾病的物种,那北极就可以不用考虑了。

  那授粉的问题呢?有没有什么植物是依赖蚊子授粉的?有,很多,但其中大部分植物(比如一枝黄花属)也可以由其他昆虫授粉。少数植物的确更青睐蚊子授粉,即虽然其他昆虫能帮它们授粉,但蚊子是最为常见,也是最有效率的。这些植物都属于兰科,也是低温生活的种类。其中一个例子是北方小泽兰(学名:Platanthera obtusata),一种生长于北极地区的舌唇兰,主要依靠雌性伊蚊和少数几种蛾类进行授粉。这种兰花通过散发一种微弱的气味——能被蚊子探测到但我们的鼻子闻不到——来吸引蚊子,这种气味非常类似人类的体味。与北方小泽兰相近的一种兰花,Platanthera flava,也是主要依靠伊蚊传粉,小型蛾类次之。其他舌唇兰属(Platanthera)物种主要由其他昆虫授粉,蚊子其次;或者主要为自体授粉,很少需要昆虫帮忙;其他少数几种兰花也有类似的现象。因此,这些兰花中有一部分可能会因为蚊子被消灭而受到威胁。不过,这些兰花中没有哪一种是对生态系统本身有重要影响的,它们对人类来说也不是很重要;没有它们世界并不会有太多改变。这并不是说兰花物种灭绝的问题无关紧要,而是说解决昆虫传播疾病的问题相对而言更为迫切。

  彻底消灭蚊子会带来什么风险?

  正如你所看到的,蚊子中并不存在所谓的“关键物种”(keystone species,又称为基石物种)。没有哪个生态系统会因为任何蚊子的消失而崩溃。唯一的例外可能是北极苔原,但那里的蚊子种类并不是疾病传播者,因此可以被保留下来。

  当然,这些都是我们的假设。毫无疑问,我们并不知道所有蚊子种类与其所处环境中其他所有生命形式之间如何相互作用,我们也有可能忽略了一些东西。非确定目标的灭绝并不是唯一的问题。存在另一种可能性是,蚊子被消灭之后留下的空白(学术上称为“生态位”)将被其他更让人烦恼——尽管可能不会传播疾病——的生物所填充。最糟糕的情况是,一种携带病原体的蚊子取代了另一种,而最可能会发生的是,蚊子会被长角亚目蚊科以外的其他类群——包括蠓科、蚋科、蛾蚋科、网蚊科、瘿蚋科、幽蚊科、摇蚊科、Deuterophlebia科、细蚊科、粪蚊科和山蚋科等科的物种——取代。这些昆虫也具有水生的幼虫,有些物种的雌性个体也会吸食血液,其中有些还会吸食人血。少了蚊科的竞争者,以及可能变得更少的捕食者,这些类群的物种可能会迎来种群数量的爆发。另一方面,原先捕食蚊子的捕食者可能会更多地捕食这些类群,在一段时间之后使其数量达到平衡状态。这些与蚊子关系很近的类群会带来危险吗?摇蚊科的种类不会叮人,但蠓科的会;而且,它们的叮咬不仅让人持续瘙痒长达一星期之久,有些物种还会传播感染人类和动物的疾病(尽管目前还没有发现人疟疾或黄热病的记录)。

  蚊子还会以另一种出人意料的方式影响生态系统,这里又要再一次提到北极。蚊子控制着北美驯鹿(学名:Rangifer tarandus caribou)的迁徙。生活在加拿大的庞大驯鹿种群一直处于不断寻找食物的旅程中,但是它们在夏天的行程会多很多,跨越更长的距离前往海拔更高的地方,有时候还会避开最佳的觅食地点。这一切,都是因为它们要躲避夏季在北极地区肆虐的庞大蚊群。长时间行进而不进食,意味着北美驯鹿为寒冷冬天积蓄的脂肪更少,而这经常代表着死亡。消灭这些地区的蚊子将改变北美驯鹿很长历史时间里的迁徙路线,由此引发的后果无法预料。另一方面,今天北美驯鹿的种群数量只是曾经数量的一小部分——从数十万头减少到数千头,而人类对其栖息地的破坏是引起数量下降的主要原因。所以多一些北美驯鹿是件好事情。蚊子对北美驯鹿的伤害显而易见。在蚊子爆发最严重的时期,北美驯鹿一星期会损失多达1升的血液。因此,如果你问我的话,我会说它们肯定非常赞成把蚊子消灭掉。考虑到它们的种群数量和群体智慧,如果投票的话,票数一定很多。

  考虑到我们已经在世界很多地区根除了疟蚊,同时没有造成麻烦,因此真正极端糟糕的情况出现的可能性很小。不过,事情也没有绝对,任何灭绝或局部地区灭绝(extirpation,指一个物种在一块选定地理区域中已经消失或灭绝,但在其他地区依然存在)都可能带来难以预料的风险。问题在于:这些可能会改变某个生态系统的风险能与人类生命的价值相比吗?在多大程度上?我们并不是在争论应不应该拯救熊猫,而是要不要根除人类有史以来已知最主要的杀人凶手。考虑到虫媒病毒和疟疾目前仍在杀死或感染数以百万计的人,如果选择不消灭那些相关的媒介蚊,唯一的辩护理由就是:这么做的预期环境效应将带来同样的损害。我们不能为了对抗黄热病而在一整片热带雨林中施放毒药,因为数百万人依赖热带雨林获取食物、药物、木材、工作机会、清洁的饮用水和清洁的空气;药方比疾病更加恶劣,并影响更多的人。另一方面,假如我们消灭了埃及伊蚊,而一种蝾螈和一种兰花也会随之消失:这样的交易我们是可以接受的。这里的“我们”是指数百万因此不再因为黄热病而死亡的人。毫无疑问,其他物种的灭绝的确是悲剧,但对抗黄热病的胜利价值可以媲美诺贝尔和平奖。渡渡鸟和袋狼的灭绝没有给人类社会带来益处,因此完全是一场不幸,相比之下,埃及伊蚊或甘比亚疟蚊的消失,其价值将比最悲观估计的成本还要高。

  我们如何能消灭全世界所有的疾病媒介蚊?

  由于对生态系统进行改造的过程相当微妙,因此重要的是不要使用一些太过宽泛的方法。预测消灭一个物种的影响已经够难了:想象一下把这一过程中所有被意外杀死的物种都考虑在内……假如我们能全部预想到的话!所以杀虫剂可以排除:它们没有明确的目标,而且也不能在全球范围内奏效。空中喷洒药剂不会伤害到那些在室内叮咬人类的蚊子,在蚊子的繁殖区域喷洒杀虫剂也不会渗透到人类住地中无数的小空间,从空心的树洞,到塑料袋里的小块积水,都可能是蚊子繁衍的场所。这也是公众参与在蚊虫防治中显得特别重要的原因:每个人都必须尽到自己的责任,把自家后院里的蚊子孳生场所清理干净。否则,即使有一家没处理好,蚊子就会卷土重来。

  不,如果我们想要根除全世界的蚊子,就需要一种针对特定物种、使目标无法抵挡并无处可逃的方法。通过方案设计,必须确保只有目标生物受到影响,而且要让它们无法适应或演化出抵抗能力。我们需要某种使它们“自我毁灭”的方法,即目标物种在无意间导致了自己的死亡。这样的事情有可能吗?

  有可能,而且已经在做了。新世界螺旋蝇(学名:Cochliomyia hominivorax)是一种寄生蝇,其蛆虫会寄生在哺乳动物的健康组织上。人类也是这种寄生蝇的寄主,但受害更严重的是牛,被寄生的牛会在10天内死亡。20世纪50年代,美国一年因新世界螺旋蝇造成的经济损失超过2亿美元。事情已经到了刻不容缓的地步,但杀虫剂并不奏效。科学家对新世界螺旋蝇进行了大量研究,包括一项耗资25万美元、部分关于新世界螺旋蝇性行为的研究。这项研究遭到许多美国参议员的责难,认为纯粹是浪费纳税人的钱。不过,这些参议员很快就乖乖地收回前言,认错道歉。科学家发现,雌性新世界螺旋蝇其实是单配的,即一生中只交配一次。研究者爱德华·尼普林(Edward Knipling)和雷蒙德·布什兰德(Raymond Bushland)推测,如果一只雌性新世界螺旋蝇与一只不育的雄性交配,那它的卵就将永远不会孵化;而由于雄性可以反复交配,因此一只不育雄性能使很多只雌性无法产生后代。因此,如果将足够多数量的不育雄性新世界螺旋蝇(不会对牛等牲畜带来影响,因为雄蝇不会吸血或产卵)“倾泻”到生态系统中,就能立刻缩小下一代的种群规模。这一过程可以反复进行多次,直到最终每只雌蝇都与不育雄蝇交配,到了那个时候,整个种群就会永远消灭了。

  在20世纪50年代的实验室中,科学家使用X射线(后来是伽马射线和其他技术)对新世界螺旋蝇进行了昆虫节育技术(sterile insect technique,SIT)的试验。他们用碎肉大规模培养雄蝇,然后用射线照射,强度足以使它们不育,同时又不会太虚弱,以至于无法与正常雄蝇竞争。长话短说,这种方法奏效了。通过每隔几星期一次地大量释放这种不育雄蝇,科学家成功地消灭了美国的新世界螺旋蝇,接着是墨西哥,然后继续向南,最终北美洲和中美洲都再也见不到这种寄生蝇的踪迹。1988年,新世界螺旋蝇被意外地带入了利比亚,而就在1990年12月,该国就引入了不育雄蝇,并在不到一年的时间里就根除了这种寄生蝇。如今在巴拿马,不育雄蝇还会被定期投放,以建立一堵生物墙,阻挡从南方飞来的任何雌蝇。这些措施仅为美国畜牧业就节省了超过200亿美元,这个数字还在不断增加。研究的作者因此获得了1992年的世界粮食奖(World Food Prize),该成果也被誉为“(20)世纪最伟大的昆虫学成就”。

  对于安全消灭疾病媒介蚊,昆虫节育技术的原理是很可取的,因为其不会对环境造成其他影响,除了会目标物种本身的消失;而且,这种方法一次只会作用在一个物种上,对埃及伊蚊的昆虫节育技术不会对撮毛伊蚊有任何影响,更不用说其他属的蚊子,以及其他昆虫、哺乳动物或人类。许多蚊子种类的雌性也是单配的,因此理论上也可以应用昆虫节育技术。此外,由于只有植食性的雄性被释放,因此就算在一个地方释放数十亿只这样的蚊子,也不会使人群被多叮咬一口。非洲的部分地区已经成功应用昆虫节育技术治理了舌蝇(Glossina spp。,能传播非洲人类锥虫病,即昏睡病或嗜睡病),但在其他地方,这样的尝试多以失败告终。在美国佛罗里达州治理四斑按蚊(学名:Anopheles quadrimaculatus)的过程中,尽管花了接近一年的时间,但依然没有任何效果,因为投放的不育雄性竞争不过正常的个体,没有交配的机会。在加利福尼亚州治理跗斑库蚊(Culex tarsalis)的过程中,也发生了同样的情况。这种技术存在的问题是,辐射会使蚊子变得虚弱,而且(或者)缩短它们的寿命,因此无法吸引雌性。并不是所有的昆虫都会对射线照射反应良好,这也限制了昆虫节育技术的使用。

  还有一种策略是“胞质不亲和性”(cytoplasmic incompatability),听起来比它本身还复杂。该方法不用辐射,而是用一种名为“沃尔巴克氏体”(Wolbachia)的细菌感染蚊子。这种细菌能感染节肢动物,包括很大部分昆虫,以及一些线虫。它们能生活在昆虫细胞内部,包括卵细胞和精细胞。当被沃尔巴克氏体感染的精子与未受感染的卵子结合时,合子将无法存活。效果保证。1967年,缅甸的奥波市就是利用这种方法,在9个星期内成功消灭了致倦库蚊(学名:Culex quinquefasciatus)。然而,当野生蚊子同样被沃尔巴克氏体感染时,这种方法就会失效:如果卵子和精子都被同一菌株感染,或者卵子被感染而精子未被感染,那它们结合而成的合子就会存活,并长成新的雄性和雌性,后者的卵子同样对沃尔巴克氏体免疫。另一方面,在实验室中高密度培育被感染的蚊子还存在很大的问题:对冈比亚疟蚊的研究显示,那些以高密度培育出来的个体很难竞争过低密度培育或自然密度下成长的个体。投放所用的蚊子需要大量且廉价地培育出来,但如果把成本压得太低,它们就可能无法与野生雄性展开竞争,并将最终失败。

  还存在另一个问题:由于我们不希望释放吸血的雌蚊,因此节育技术也好,其他方法也好,我们都需要在实验室培育的蚊子被释放之前,以某种方式将其中的雌蚊清除掉。不幸的是,蚊子中的性别比例为50/50,因此有必要想出一种分隔雄性和雌性的方法。科学家一开始所用的方法简直不能再原始了:雄蚊和雌蚊的蛹在颜色和大小上有细微的区别,因此可以用人工或带有过滤器的机器将它们分拣出来,确保只有雄蚊被送去用射线照射,然后释放。令人郁闷的是,这种筛选方式对疟蚊属无效,因为二者的蛹大小相同。甚至在这一步之前,许多金钱也是白白花掉的,因为实验室里的雄蚊和雌蚊都消耗同样多的资源。可以这么说,在昆虫节育项目中,只有不到一半的昆虫会最终被释放,实际的投入是理论上投入的两倍。如果想在全球范围内采用昆虫节育技术消灭媒介蚊,我们需要释放数量极为庞大的不育雄蚊,高昂的成本将是必须考虑的问题。

  有没有什么方法可以确保只培育雄蚊,或者提前把不必要的雌蚊先杀死呢?有,使用“遗传性别品系”(genetic sexing strains,GSS)。这是一种用了很久的技术,原理是将一个显性的选择标记——使持有者能够在致命条件下存活下来的某个基因——连接到雄性的性染色体上。一个成功的例子是名副其实的“MACHO”(西班牙语中健壮男子的意思):一个在雄性染色体上具有抗杀虫剂基因的白魔按蚊(学名:Anopheles albimanus)品系。蚊子通常具有和人类一样的XY型性染色体,只有雄性具有一条Y染色体。当用杀虫剂处理一堆MACHO的卵时,可以杀死99.9%的雌性。20世纪70年代晚期,在萨尔瓦多,这一方法确保了每天可以投放100万只雄蚊用于控制野生蚊子的数量。这场清除行动几乎成功,直到其他国家的蚊子又迁移了过来。无论最后我们选择了哪一种技术,都应该能够普及到世界范围。尽管有接近成功的前例,但遗传性别品系技术仍然没有解决辐射会导致许多雄蚊竞争力下降的问题。

  最新的一项技术完全跳过了辐射。该技术被称为“RIDL”,是“昆虫显性致死释放技术”(Release of Insects carrying Dominant Lethals)的缩写,由昆虫学家卢克·阿尔菲(Luke Alphey)发明。RIDL技术中,雄蚊不必接受辐射照射,因此它们和野生的雄蚊一样健康,一样富有竞争力,但也同样是可育的。不过,它们体内携带着一个致命的基因,能导致幼虫后代在长到吸血成虫之前死亡。目前RIDL技术涉及的一种基因被称为“tTAV”(tetracycline repressible activator variant,四环素可抑制活化剂变体),能产生一种有毒蛋白质,阻塞昆虫细胞内的细胞器活动,使其他基因无法激活,从而导致昆虫死亡。这种技术只在蚊子自身的细胞内起作用,所产生的蛋白质在被其他动物摄食后会被消化降解,从而对任何捕食被改造蚊子及其幼虫的动物没有任何伤害。这是一个完全无毒的体系。“但是等一下,那这些蚊子在实验室里是怎么长到成体的?”也许你会这么问。答案是四环素(Tetracycline),这种常见的抗生素同时也是tTAV的解毒剂。在实验室培育中,研究者会用四环素喂食雄蚊,使它们得以发育为成体,但是到了野外,它们和它们的后代就没有活路了。目前,美国南部和南美洲正在使用RIDL技术对抗蚊子,并且已经使传播登革热的蚊子数量大幅下降;巴西也正在使用该技术阻止寨卡病毒的蔓延。

  目前科学家还开发了一种应对地中海实蝇(学名:Ceratitis capitata)的新技术,未来或许也能用于媒介蚊的防治。这是一种雌性特异性的RIDL技术,其原理是:雄性携带的一个基因能产生某种蛋白,在没有解毒剂的情况下,这种蛋白只会杀死雌性。在该体系中,雌性与被改造的雄性交配之后,会产下完全可育的卵,但其中的雌性后代会在幼虫时期死亡,只有雄性后代能存活到成体。这些雄性携带着被改造的基因,继续与数量变得更少的雌性交配。通过这种方法,人们只要释放一次雄性,就可以引发目标种群中的连锁反应,使其数量逐代减少。

  RIDL是一种神奇的策略,对环境或非目标生物没有任何有害影响,甚至能使人们不必与辐射打交道。不过,由于该技术涉及到基因改造,也就是说改造后的蚊子本质上是转基因动物,这也就意味着有一些“惯犯”会努力尝试阻止它们,有的甚至散布起相当有想象力的谎言,而媒体则往往没有能力分辨事实和谎言,或者根本就不感兴趣。大部分故事担心蚊子释放之后会到处乱飞,并叮咬当地居民。有些文章则宣称这些蚊子是在给人类接种对抗疾病的疫苗,如果真是这样的话就太妙了,可惜并不是。还有的人宣称被这些蚊子叮咬之后会让人变异,这同样是够荒谬的。一些人甚至宣称新生儿小头畸形并不是由寨卡病毒引起的,而是因为那些被释放出来的蚊子,并称这种病是“松散基因综合症”。这种疾病当然是不存在的,而且在生物学上也不可能;事实上,这些人之所以否认真实存在的、由寨卡病毒导致的新生儿小头畸形问题,是为了恐吓人们远离转基因,并更好地销售他们的高价有机产品。这是对真正人类痛苦的无耻利用。幸运的是,你现在将了解一个非常重要的事实:雄性蚊子不会叮人——这几乎可以用来反驳上述所有关于昆虫投放的荒谬描述。雄蚊不会吸血,实际上还会避开人类;而由于投放的只有雄蚊,因此认为被投放昆虫会伤害人类的观点完全是无稽之谈。

  这些技术是否意味着我们能够一劳永逸地摆脱杀虫剂?还没到那个程度。请记住,昆虫节育技术和RIDL都要求释放的雄蚊要远多于野生雄蚊。无论我们培养不育或基因改造雄蚊的效率有多高,只要野生种群的数量过多,那这些技术就永远不能发挥实际作用。相反地,我们需要先用杀虫剂把野外种群的数量降下来,降到一定阈值时,才能使昆虫节育技术和RIDL奏效。此外,如果我们想让整个星球摆脱这些物种,那雄蚊的投放就必须覆盖它们的整个分布范围,而这意味着无比广阔的空间。当然,有进步就是好的,即使无法消灭世界上所有的疾病媒介蚊,我们也已经使全世界范围内蚊媒疾病的死亡率大幅下降。

  不过,再等一下!有一种技术,不仅能在完全不伤害携带者和环境的情况下消灭病原体,而且不需要投放或培育昆虫。首先,让我介绍一下查加斯病(又称美洲锥虫病),由美洲锥虫(学名:Trypanosoma cruzi)引起的一种疾病。美洲锥虫的携带者是锥蝽(锥蝽亚科Triatominae的物种),其中最厉害的两个物种是骚扰锥蝽(学名:Triatoma infestans)和长红锥蝽(学名:Rhodnius prolixus)。锥蝽又被称为“亲吻虫”,因为它们喜欢叮咬人类嘴巴附近的区域吸食血液。它们还有一种令人不适的习惯——吃饱之后就开始排泄。而且,当被叮咬的人抓伤口的时候,会把它们的粪便弄进伤口里,造成感染。查加斯病会带来一些可能致命的症状,比如心室扩大。科学家在锥蝽身上进行过昆虫节育技术的尝试,但后来又有了新的防控策略——转基因共生菌(paratransgenesis)。与对昆虫进行基因改造,使其产生某种蛋白质(转基因)不同,这种新技术是对昆虫体内的共生微生物进行基因改造。以长红锥蝽为例,这种昆虫的体内都具有一种共生细菌——椿象红球菌(学名:Rhodococcus rhodnii),为它们制造维生素,以及其他从血液为主的食物中无法获得的物质。对细菌进行基因改造比较容易,因此科学家开发出了能产生有毒蛋白质(对美洲锥虫而言)的转基因共生体。如果用改造过的椿象红球菌喂食长红锥蝽,后者就会对美洲锥虫免疫,不再成为传播载体。细菌还可以很容易地大量培养,从而省略了昆虫投放的问题。最棒的是,受到感染的锥蝽成虫会将转基因共生菌传递给后代:锥蝽幼虫经常以成虫的粪便为食,从而将椿象红球菌摄入体内(这种细菌无法在我们人类的血管里存活,因此既不会伤害我们,也不会带来什么好处)。这种新技术相当有前景,把含有转基因椿象红球菌的锥蝽粪便投放到美洲锥虫肆虐的地方,最终的结果就是这些寄生虫被完全消灭,而锥蝽安然无恙,整个生态系统也完全不会受到影响。转基因共生菌技术或许还能用在其他地方,科学家正致力于开发适用其他物种的转基因共生菌,比如利用一种基因改造的真菌使疟蚊对疟原虫免疫。

  到这里,你应该已经对是否应该把某个蚊子物种消灭,以及这么做是否可行有清晰的概念了。如果你对另一些昆虫,比如臭虫、蟑螂等也有类似的问题,或许你可以尝试自己来回答一下。你可以问自己:这类昆虫中有哪些物种是真的有害?昆虫节育技术(SIT)是否可行?有没有其他应对相关疾病的方法?如果你对这样的问题感兴趣,可以考虑一下从事医学昆虫学、流行病学、遗传学或(理所当然的)医学等领域的工作,或许我提到的那个诺贝尔奖有朝一日就会属于你。

  与此同时我们应该做什么?

  在全球范围内根除疾病媒介蚊,无论能否做到,也无论是不是一个好主意,都与现实有很长的距离。在那之前,最好的方法是做到局部根除。如果你有一片小池塘,放一些金鱼、锦鲤或孔雀鱼进去吃蚊子幼虫,没必要一定要用食蚊鱼。杀虫剂是另一个不那么理想的选项,因为那些有益的昆虫也会被杀死。不过在紧急情况下也可以酌情使用,比如目前在巴西就使用杀虫剂来对抗寨卡病毒……当然,并不是这些化学药品导致了新生儿小头畸形——无论阴谋论者怎么说,这样的说法都是完全没有被证实的。目前所用的杀虫剂中大多数都是对人体无毒的。

  对于在容器积水中孳生的蚊子,要经常清理容器或者把水排干。注意任何能积蓄雨水的地方,从喂食动物的小碗到花瓶,从旧轮胎到塑料袋或帆布。从这些角落里孳生的蚊子最先叮咬的就是你,因此你所做的一切,都是在为保障公众健康做贡献。最重要的是,这是在保护你自己。当你深入某种蚊媒疾病肆虐的地方时,记得在皮肤或衣物上喷洒防虫喷雾,并在睡觉时挂起蚊帐。对儿童来说,蚊帐的作用非常重要,因为他们在感染疟疾等疾病时症状最为严重。

  想要知道更多信息,可以咨询你当地的传染病媒介防治机构或蚊虫治理的地方网站,也可以咨询当地的专业人士,听取他们对本地区蚊虫防治的建议。你也可以在美国疾病防控中心或美国国家过敏和传染病研究所的网站上了解到与蚊子或其他昆虫为媒介的疾病信息。

 

原文链接:

https://www.quora.com/profile/Matan-Shelomi/Posts/Mosquitoes-Can-we-get-rid-of-them-and-what-would-happen-if-we-did

抵乌市

在成都参加了一个青年编辑交流会之后,回广州休息了一天,就登上了前往乌鲁木齐的火车,开始48小时的卧铺之旅。看过山和山,黄土,草地,彩虹,长江,黄河(不确定是,但至少见了不少浑黄的河),城镇,村庄,还有吐鲁番盆地的戈壁之后,终于在今天中午到达了乌鲁木齐。

其实还蛮喜欢火车旅行的。除了不能洗澡,其他都很舒服,可以看书,可以下棋,可以和素不相识的人聊天,了解千里之外的风土人情,到站之后又各奔东西,有缘的话或许在某个山坡,某个湖边又相逢。

传说中的迪化城,阳光凶猛,却并不炎热。

各种样貌不一样的人,各种双语的标牌,耳边也一直传来听不懂的语言,然而建筑、标语、服装,一切又都是那么的熟悉。这是一个很特别的中国城市。不能免俗地,我们去逛了自治区博物馆和国际大巴扎。见识了西域从三四千年前到现在的发展史,许多消亡的古国,许多还没有消亡的干尸;再看从汉代到唐代的西域经略史,宗教变迁,实在令人唏嘘。虽然并没有很详细地讲述,展品也没有如想象中的那么丰富,但还是很值得回味的。

大巴扎似乎就没什么值得说道的地方了,除了中途找了一家维族人开的餐厅吃饭,特色拌面加羊肉汤。拌面里也是羊肉,羊肉汤里也两大块羊肉,真真是吃爽了,感觉再来一大块的话还能吃下去,就是会腻了。

发现超市里卖的奶啤很好喝,明天出去看到的话再买两罐。晚上九点多十点的时候,天终于黑了,又冲了个凉,可以睡觉了。

貓貓的世界征服史:從抓老鼠到沙發馬鈴薯

最近收养了一只黄白色小猫,名唤“奶黄包”,调皮得很,不过养着养着也生出了许多趣味。同时还是推荐最近圆桌派的一期,真是解答了许多疑问,也有诸多同感,07-19期第十七集 吸猫:喵星人的爱与哀愁

=====================================================

貓貓的世界征服史:從抓老鼠到沙發馬鈴薯

作者:寒波

農夫:是擅長抓老鼠的朋友呢

貓不只在台灣,也在世界上許多地方大受歡迎。人類最早是在什麼地方,與牠們發生關係的呢?

目前馴化貓最早的證據,來自塞浦路斯距今 9500 年前的墓葬,有隻貓完整地與人被葬在一起1。為什麼死掉以後還要一直在一起?理由現在已不可考,只能確定那個時候,貓已經與人建立起某種關係了。

貓最初被馴化的地點,應該不是塞浦路斯,而是肥沃月灣,也就是世界最早的農業起源地。科學家推論,貓的馴化與老鼠有關。人類本來以採集狩獵維生,不會儲藏大量食物,也不長期在一地定居;等到一萬多年前農業發明以後,人類開始定居、儲藏糧食,也引來了老鼠;老鼠是貓的狩獵對象,跟著老鼠前來的貓,有了接觸人類的機會,或許,貓就此與最早的農夫成了朋友。

事實上,肥沃月灣中的黎凡特(現在的以色列、約旦、敘利亞一帶),其居民開始定居與儲藏食物,比種田更早數千年。最近研究指出,其實在黎凡特人開始定居,尚未正式成為農夫以前,老鼠就已經出現了2;假如老鼠比本來預期的更早來襲,貓與人結緣的歷史也會更早嗎?這個有趣的題目,目前仍沒有研究。(延伸閱讀 1)

用古貓 DNA 研究馴化史

當今世上的野貓(Felis silvestris)被分為 5 個亞種,所有馴化的家貓都可以追溯到,原產於北非與中東的非洲野貓Felis silvestris lybica)一種,其他 4 種歐洲野貓(Felis silvestris silvestris)、亞洲野貓(Felis silvestris ornate)、南非野貓(Felis silvestris cafra)、中國野貓(Felis silvestris bieti),與家貓之間有情慾交流,不過沒有被馴化過的證據。

一般的馴化動物,與祖先或野生的親戚相較,型態、習性等許多特徵會產生差異,不過家貓與野貓間的很多特徵,變化都很有限。所幸科學家已經知道,可以根據粒線體 DNA 上,一段 286 個核苷酸長的序列,分辨出 5 種亞種;所有馴化貓皆屬於第五型(IV),旗下又可再細分為 5 種:A、B、C、D、E,以 A 與 C 最多。

一隊科學家,搜集許多古代貓的樣本,取得其中 200 多個樣本的古貓 DNA,試圖研究貓的馴化歷史3。樣本最古早的距今 9000 年,最接近現代的則是 19 世紀;比較各地與不同時期的古貓 DNA 以後,研究團隊發現,A 貓與 C 貓的發展史截然不同。

農業誕生後的新石器時代,在中東一帶,以及幾千年後歐洲的古貓,遺傳上以 A 貓為主,還有少少的 B 貓,表示最初與人成為朋友的貓,應該屬於 A 這個粒線體支系。當今另一主流 C 貓是怎麼來的?一些證據指出,古埃及是一個重要的養貓中心;這回論文發現,距今 2800 年起的埃及古貓都屬於 C 貓,因此 C 貓這個支系,應該與埃及關係密切。

古埃及的貓-女神、假木乃伊、沙發馬鈴薯

埃及人開始養貓的年代,遠遠比 2800 年前更早。目前埃及最早有馴化貓的證據,處於古埃及文明尚未正式開始,也還沒有金字塔的 5700 年前,那時算是前王朝時期4。在當時上埃及的城市-希拉孔波利斯(Hierakonpolis,鷹隼城)出土的一處古墓,考古學家發現墓中有與人一起下葬,保有完整骨架的貓,而且 not one,not two,not three……一共有一女一男四小,共 6 隻之多!

隨後數千年,隨著古埃及文明的發達,貓也成為古埃及文化中,常見的藝術、宗教形象。埃及眾神中,有女性貓神芭絲特(Bast/Bastet);古埃及人也製作過許多貓的木乃伊,還因為供不應求,使得黑心商人生產過為數眾多,裡面根本沒有貓的假貨木乃伊。(延伸閱讀 2)

埃及是富裕的農業中心,由眾多描述貓的藝術作品中,可以看見貓的角色,在古埃及經歷過明顯的演變。最早期的作品中,貓在狩獵老鼠;之後的作品裡,貓與人一起打獵;可是更晚期的作品,貓出現在餐桌旁邊。簡直就是,從獵捕老鼠,變成沙發馬鈴薯5

從中東與埃及,前進到世界每一個角落

距今 2800 年的埃及古貓屬於 C 貓,不同於更早之前源自中東的 A 貓。然而 C 貓從何而來,是從中東傳入後在埃及發揚光大,或是在埃及本地獨立馴化而成,由於目前沒辦法得到埃及更早以前的古貓 DNA,因此無法釐清。不過仍能確定,埃及是個重要的育貓中心。

埃及後來屬於羅馬的一員,成為歐亞大陸西部的糧倉,是國際貿易體系中的重要一環,而埃及 C 貓也跟著前進各地。隨後的時光中,C 貓陸續於各處現身,值得一提的是,研究團隊在位於現在德國的波羅的海側,曾經是維京人港口的 Ralswiek,也找到 C 貓的蹤跡,由此推論,擅長航海與貿易的維京人,也曾替傳播 C 貓出了一份力。(延伸閱讀 3)

發源自中東與埃及,可以在船上捕鼠的貓,或許就靠著作為船貓與旅伴的角色,隨著人類最終征服了全世界。

受歡迎的古典虎斑貓

野貓與馴化貓的差異不多,其中之一是貓毛的花紋。野貓的斑紋大部分屬於鯖魚虎斑(mackerel-like tabby),而家貓中,古典虎斑(classic / blotched tabby)的比例很高。貓貓斑紋的型態是由 transmembrane aminopeptidase QTaqpep)基因控制,這次研究也偵測了古貓中,此一基因的版本。

儘管貓的馴化史,可能已經長達一萬年之久,研究團隊卻發現古典虎斑要等到 14 世紀,才在鄂圖曼土耳其首度出現,然而才過了幾百年,古典虎斑卻已經是如今全世界家貓的常見特徵。這表示 14 世紀以後的人,有意挑選配備古典虎斑的貓飼育,此般對外形的偏好,在從前幾千年都沒有發生過。

貓與人,一段良緣

貓最初與人類結緣的理由,可能是獵捕老鼠。有趣的是,最近有其他論文報告,中國北方距今 5000 年左右,新石器時代的遺址中,也發現了馴化的貓科動物-石虎(Prionailurus bengalensis6。這表示小型貓科動物與農夫發展出共生關係,在歷史上發生過不只一次;然而這段關係似乎沒能延續太久,因為今日歐亞大陸東方的貓,仍是源自中東、埃及的血脈,與東亞的石虎無關。(延伸閱讀 4, 5)

時至今日,人類的生活品質比幾千年前大幅進步,與人共同生活的貓,任務也從最初的獵捕老鼠,成了陪伴人類的沙發馬鈴薯(百萬貓奴點頭同意)。這回的研究,大大增進我們對貓馴化歷程的了解;不過粒線體 DNA 畢竟只能反映部分的遺傳歷史,不如整個細胞核基因組,期待未來科學家能取得完整的古貓基因組,拼湊出更詳細的貓族大歷史。

延伸閱讀:

  1. 短篇  人鼠之間-人類開始定居,家鼠也隨之誕生
  2. 假木乃伊風雲
  3. 在船中長眠的武士:十世紀的維京船葬
  4. 貓咪在歷史上被馴化了兩次?
  5. 短篇 中東一萬年前馴化貓,中國5000年前馴化石虎

參考文獻

  1. Vigne, J. D., Guilaine, J., Debue, K., Haye, L., & Gérard, P. (2004). Early taming of the cat in Cyprus. Science, 304(5668), 259-259.
  2. Weissbrod, L., Marshall, F. B., Valla, F. R., Khalaily, H., Bar-Oz, G., Auffray, J. C., … & Cucchi, T. (2017). Origins of house mice in ecological niches created by settled hunter-gatherers in the Levant 15,000 y ago. Proceedings of the National Academy of Sciences, 201619137.
  3. Ottoni, C., Van Neer, W., De Cupere, B., Daligault, J., Guimaraes, S., Peters, J., … & Becker, C. (2017). The palaeogenetics of cat dispersal in the ancient world. Nature Ecology & Evolution, 1(7), 0139.
  4. Van Neer, W., Linseele, V., Friedman, R., & De Cupere, B. (2014). More evidence for cat taming at the Predynastic elite cemetery of Hierakonpolis (Upper Egypt). Journal of Archaeological Science, 45, 103-111.
  5. Ancient Egyptians may have given cats the personality to conquer the world
  6. Vigne, J. D., Evin, A., Cucchi, T., Dai, L., Yu, C., Hu, S., … & Dobney, K. (2016). Earliest “Domestic” Cats in China Identified as Leopard Cat (Prionailurus bengalensis). PloS one, 11(1), e0147295.

文章链接:http://pansci.asia/archives/121908

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

从传说到现实:走进美丽神奇的海螺世界

蓝蓝的大海水,蓝蓝的水上天。蓝蓝的海水中,孕育了无数美丽而神奇的海螺。

在我国沿海许多地方,从福建的东海之滨,到海南三亚的黎族村庄,都流传着海螺姑娘的传说。1955年,著名作家和诗人阮章竞根据民间传说创作了童话诗《金色的海螺》。1963年,上海美术电影制片厂将这个故事搬上了银幕,精美的画面和悠扬的配乐,使这部同名的剪纸动画片成为电影史上的经典。

“金色的海螺”的图片搜索结果

《金色的海螺》讲述了这样一个故事:大海的那边居住着一个勤劳的青年,一年三百六十个早晨,无论大海涨潮退潮,他都要出海打鱼。有一天,青年在海中捞到一个金色的海螺,他把海螺带回家,养在水缸里。之后,在青年出海的时候,海螺就化作一位美丽的少女,帮助青年烧火做饭,缝补衣裳。这位海螺姑娘其实是海中珊瑚仙岛上的蓝海仙女,从前是被打渔少年救过的小金鱼。为了报答救命恩人,她变作海螺姑娘,决定陪在青年身边,每天一同劳动、歌唱。

三年之后,海螺的母亲海神娘娘发现了海螺的踪迹,她威胁青年离开海螺,否则就以水淹人间。面对威逼和利诱,青年表现出了无比的勇敢和真诚,并最终打动了海神娘娘。他和海螺姑娘终于幸福地生活在一起。

其实,在中国民间,类似海螺姑娘这样的传说并不少见,比如在很多地方流传的田螺姑娘传说,也是差不多的故事内容,只不过海螺变成了田螺。为什么会出现这么多如此相似的“螺女”传说呢?一方面,这说明了螺与普罗大众的生活密切相关。“螺”其实并不是专业的生物分类名称,而通常是腹足纲中具有螺旋形外壳的所有水生种类的统称。在西方语言中,一般不会区分水生的螺类和陆生的蜗牛。在海洋中生活的螺被称为海螺,淡水中则经常被称为田螺或螺蛳。无论是海螺还是田螺,都是普通百姓喜爱的美食——这或许也是海螺姑娘或田螺姑娘的举动往往与饮食联系在一起的原因。

另一方面,螺的外形是女性的象征,许多女性也会用螺壳作为装饰品,或者模仿螺壳形状梳理自己的头发——这种发型被称为“螺髻”。在民间文化中,螺还具有占卜、预言的功能,某些种类的螺壳还是重要的宗教法器和身份象征。此外,有些海螺还曾经在人类社会发展历史中扮演过重要的角色,比如宝贝科的货贝就曾经在许多国家被作为原始货币。

 四大名螺

我们常常可以听到所谓“四大名螺”的说法,这里指的是法螺、鹦鹉螺、唐冠螺和万宝螺四种具有高观赏性的海螺。从古至今,这四种海螺一直受到人们的喜爱,也受到许多爱好者的追逐。一方面,通过这些海螺,我们感受到了大自然的神奇,感受到了海洋生物之美;另一方面,人类的捕捉和追捧,也使其中一些海螺物种数量不断减少,给海洋生态系统带来了潜在威胁。以下,我们就通过这四种著名的海螺,走进美丽而神奇的海螺世界。

 法螺

在佛教中,法螺是一个重要的法器。法螺又称大法螺、凤尾螺,是一种分布范围广泛的大型海螺。法螺是珊瑚礁中体型最大的软体动物之一,壳长可以达到60厘米。磨去壳顶之后,法螺可以制成号角。在重要的宗教仪式中,声音占据着非常重要的地位,往往被用作时空界限的标志,这其中就包括钟声、鼓声和螺声等。

在珊瑚礁生态系统中,法螺还具有十分重要的生态功能。它们是少数几个能摄食长棘海星的物种之一。长棘海星是一种体型庞大、破坏性极强的海星。据报道,这种海星已经在大堡礁和西太平洋的珊瑚礁造成了大量珊瑚死亡。法螺具有灵敏的嗅觉系统,在追踪到长棘海星之后,它会迅速靠近,利用身体重量和强有力的腹足包裹住长棘海星的身体。接着,法螺将如同锉刀的齿舌伸入长棘海星的中央体盘,并分泌酸性的消化液。经过大约一个小时,长棘海星的肉质部分基本被法螺吃掉,礁石上只留下软塌塌的残骸。

近年来长棘海星的爆发是否与法螺等天敌的数量下降有关,目前还存在争议,但毫无疑问的是,法螺对控制长棘海星的肆虐有着重要作用。法螺对水体环境要求很高,而且生长缓慢,如今活体的大型个体已经越来越少见。在澳大利亚和其他一些国家,法螺已经得到了法律保护,但在世界许多地方(包括互联网上)依然可以合法买卖。

 鹦鹉螺

许多人第一次听说鹦鹉螺,或许是在法国小说家儒勒·凡尔纳的《海底两万里》中,书中出现的潜艇就被称为“鹦鹉螺号”。巧合的是,在这本书出版近半个世纪后,世界上第一艘实际服役的核动力潜艇也被命名为鹦鹉螺号,虽然这个名称承继自1803年服役的一艘美国海军多桅纵帆船与之后沿袭此名的两艘常规动力潜艇。

鹦鹉螺是一种非常独特的海螺。首先,它们不像其他绝大多数海螺一样属于腹足纲,而是属于头足纲,与章鱼、墨鱼和鱿鱼的关系更近。其次,它们又是现生头足纲动物中唯一具有外壳的种类。它们的外壳薄而轻,以螺旋形盘卷起来,形似鹦鹉的嘴,也因此得名“鹦鹉螺”。虽然船蛸这类远洋章鱼具有类似贝壳的结构——它们也被称为“纸鹦鹉螺”——但这是只有雌性个体才能分泌形成的卵盒结构,也不像鹦鹉螺一样具有填充气体的腔室,因此并不是真正的头足纲贝壳。

说到鹦鹉螺的外壳,就不得不提到等角螺线。法国哲学家、数学家和物理学家笛卡尔在1638年发现了等角螺线,之后数学家雅各布·伯努利对其重新进行了研究,并发现了许多特性。鹦鹉螺的外壳纵切之后,切面呈现出优美的等角螺线,而等角螺线本身又与黄金分割密切相关,这不禁让人感叹生命的神奇。

切开鹦鹉螺的外壳之后,我们还可以看到其中被隔板分隔而成的三十余个壳室。鹦鹉螺的身体居住在最后一个大壳室中,其余壳室则充满气体(主要为氮气)。随着鹦鹉螺的成长,壳室会周期性向外侧推进,外套膜后方则分泌出碳酸钙和有机物质,形成新的隔板。在各个壳室之间有一个贯穿的细管,可以输送气体。鹦鹉螺可以通过调节气体来控制上浮、下沉和水平移动,这种方式与潜艇的原理十分相似。

鹦鹉螺分布于印度洋和太平洋。在鹦鹉螺的主要产地法属新喀里多尼亚,还以鹦鹉螺作为国徽的主要图案。目前,这些在地球上存在了数亿年,外形、习性却又变化极少的“活化石”已经数量稀少。由于对生活环境有数个大气压的水压要求,它们也很难进行人工饲养。2016年,所有鹦鹉螺科物种都被列入了濒危野生动植物国际贸易公约(Convention on International Trade in Endangered Species of Wild Fauna and Flora,CITES,又被称为华盛顿公约)的附录Ⅱ。在我国,鹦鹉螺属于国家一级保护动物。

 唐冠螺

唐冠螺又称为冠螺。顾名思义,这个名称来源于唐冠螺的外形酷似唐代的冠帽。无独有偶,唐冠螺在英文中被称为“horned helmet”,意思是角盔——你可以想象一下古代维京人头上戴的有两只尖角的头盔。

唐冠螺也是一种珍贵的大型海螺,螺壳又大又厚,长度在5厘米到41厘米之间,高度可达30厘米。唐冠螺壳面呈灰白色到浅橙色,具有金属光泽,上方长有许多较大的角状突起。在狭长的壳口周围,具有很厚的片状突起,并形成一个三角形的平面,呈鲜艳的橙色。独特的形状和颜色,使唐冠螺成为许多人追逐的观赏螺类。

唐冠螺主要分布于温暖海域,包括我国台湾、西沙群岛、南沙群岛海域,以及印度—西太平洋暖水区。它们通常珊瑚礁附近沙质或碎珊瑚底质的浅海中活动,以海胆等棘皮动物为食。虽然还没有被列入国际自然保护联盟的濒危物种红色名录,但唐冠螺在许多地方已经受到人类的严重威胁。由于唐冠螺也能捕食长棘海星,因此它们在澳大利亚昆士兰州受到严格的保护。在我国,唐冠螺属于国家二级保护动物。

 万宝螺

四大名螺的最后一个成员是万宝螺,属于唐冠螺科,与唐冠螺在分类学上比较接近。万宝螺也是一种大型海螺,螺壳又厚又沉,壳体长度可达17厘米。万宝螺壳面的颜色鲜艳,深浅不一的白色和橙红色纵横交错,并且富有光泽。和唐冠螺一样,万宝螺也主要栖息在靠近珊瑚礁的沙质海底,是海胆的重要捕食者。它们也主要分布在热带印度—太平洋海域。

四大名螺只是海螺世界中微不足道的一小部分,大海中还生活着无数同样美丽的海螺,比如色彩斑斓如同虎皮的虎斑宝贝(又名黑星宝螺,为国家二级保护动物),比如具有超过100根棘刺、如同一把精美梳子的维纳斯骨螺,又比如外形类似圆锥、能分泌毒素的芋螺等等。所有这些,都是五光十色、精彩纷呈的海洋世界中不可或缺的部分,值得我们的欣赏和珍惜。

 

略删改后发表于《知识就是力量》2017年6月期

不结网的拟态蛛:专门捕食其他蜘蛛

一种尚未定种的拟态蛛一种尚未定种的拟态蛛
一只蛛网上的角类肥蛛(学名:Larioniodes cornutus)一只蛛网上的角类肥蛛(学名:Larioniodes cornutus)

 

      尽管属于结网蛛类,但拟态蛛科(Mimetidae)的物种并不会结网,而是演化出复杂的捕食策略,以其他结网蛛类为食。

  结一张网,等待苍蝇落网,然后用蛛丝把苍蝇包裹起来再慢慢享用。对结网蛛类来说,这样的捕食策略已经被证明非常有效,它们也因此成为动物界中最成功的类群之一。目前科学家已经发现了超过3000种结网蛛类,几乎分布在世界各个角落。

  结网是一项相当细致的工作。除了多种形式的蛛丝和黏液,蜘蛛还需要按顺序进行精准的操作。但是,如果能侵入其他蜘蛛的地盘,以蛛网主人为食的话,又何必费心费力地结网呢?拟态蛛就是这么做的。

  拟态蛛又被称为“海盗蜘蛛”,它们的捕食策略在动物界中可谓登峰造极。虽然在解剖学上已经失去了结网能力,但拟态蛛仍然可以产生蛛丝,用于制造卵囊和包裹猎物。相比其他结网蛛类,拟态蛛腹部喷丝头上的喷丝套管数量要少得多。

  在捕食过程中,拟态蛛先侵入其他蜘蛛的蛛网,然后轻轻地拨动蛛丝,引诱猎物蜘蛛前来。当猎物蜘蛛靠得足够近的时候,拟态蛛就会迅速出击。首先,它们会用两只巨大的前足圈住倒霉的猎物蜘蛛。拟态蛛的步足上具有长短交错的刺,围拢起来时就像鸟笼一样,使猎物蜘蛛无法脱身。接着,拟态蛛咬住猎物蜘蛛,用螯牙注入强力毒液,立刻使猎物失去运动能力。

  这实在是非常高效的捕食技巧。“你会目不转睛地观看一只拟态蛛悄悄潜入其他蜘蛛的地盘,挥动第一对步足吸引猎物前来,”美国新罕布什尔大学的马克·汤利(Mark Townley)说,“为了研究纺器,我们需要花费很多小时来喂养拟态蛛,但我从未对它们搜寻和攻击猎物的场景感到厌烦。这样的场景总是非常奇妙。它们可以非常精妙地运用第一对步足,非常轻柔地触摸猎物,以至于没有发生任何形式的反抗,甚至猎物似乎都完全没有发觉。”

  不过,我们目前还未完全了解拟态蛛捕食策略是如何奏效的。特别是,我们不清楚拟态蛛为什么要拨弄猎物蜘蛛的网。很久以来,科学家一直认为拟态蛛拨弄蛛丝是为了模仿落网昆虫引起的振动,它们的拉丁学名“Mimetidae”——字面意思是“模仿者”——也由此而来。然而,并非所有的生物学家都认可这一观点。

在另一只蜘蛛蛛网上的拟态蛛(Ero sp.)在另一只蜘蛛蛛网上的拟态蛛(Ero sp.)
一只拟态蛛(Ero sp.)的卵囊一只拟态蛛(Ero sp.)的卵囊

  “网中蜘蛛爬向拟态蛛的行为,与它们爬向真正猎物时的行为有很大不同,这两种情况在蛛网上引起的振动也很不一样,”加州州立大学贝克斯菲尔德分校的卡尔·克鲁克(Carl Kloock)说道。他提出了另一个观点。“在我看来,最可能的情况是,拟态蛛模拟的是相同蜘蛛物种入侵蛛网时产生的振动,也可能是不同物种的蜘蛛,”克鲁克说,“占据蛛网的蜘蛛需要保卫自己的网不被其他蜘蛛夺走,后者可能是为了免除自己结网的辛劳,又或者只是单纯想从网里夺取猎物。”

  “这类相遇遵循着相当简单的模式,两只蜘蛛会互相发出信号,然后缓慢接近,通常体型较小的蜘蛛会投降并逃离蛛网,”克鲁格补充道,“我认为拟态蛛所做的,基本上就是发出一个欺骗信号,将自己伪装成体型较小却拒绝离开的入侵者,吸引蛛网主人靠近,再靠近,直到进入攻击范围。”

  然后就是拟态蛛毒液的问题。这种毒液已经演变到对其他蜘蛛有极高的毒性,甚至包括拟态蛛的同类,但对其他动物却作用不大。“当另一只蜘蛛被咬时,它会马上停止活动,而果蝇被咬后还能存活好几分钟,”美国德克萨斯A&M国际大学的丹尼尔·莫特(Daniel Mott)说,“它们的毒液似乎对其他蜘蛛特别有效。”

  拟态蛛为什么,以及如何演化出这样奇特的捕食策略呢?第一个问题是,猎物蜘蛛本身也是捕食者,具有螯牙和毒液。这意味着,它们比其他猎物,如甲虫、苍蝇等更加危险,数量也更少。

  其次,拟态蛛属于特化性的捕食者。尽管它们有时也会捕食其他猎物,但最主要的食物来源还是蜘蛛。相比之下,大多数结网蛛类是广食性的捕食者,网里捕到什么就吃什么。

  事实上,拟态蛛甚至不能在没有蛛网的情况下捕食其他蜘蛛。“在实验室里,如果你把一只结网蛛放到罐子里,使它不能结网,那拟态蛛就不会攻击它,”德国汉堡大学的达尼洛·哈姆斯(Danilo Harms)说,“拟态蛛需要有张网才能捕捉其他蜘蛛。”

  通过某种方式,拟态蛛的祖先不仅失去了结网的能力,而且变成了专注以其他蜘蛛为食的捕食者。哈姆斯表示,最可能的解释是,这种行为起源于偷窃。拟态蛛的祖先一开始入侵其他蜘蛛的蛛网时,主要是为了偷取网中的猎物。这种行为被称为“偷窃寄生现象”(kleptoparasitism)。

  一些拟态蛛祖先可能将这种策略进行了升级,转为以蛛网上的蜘蛛为捕猎对象。随着时间推移,它们变得越来越“专业”,越来越善于捕捉其他蜘蛛:演化出了修长的前足、精妙的蛛丝拨弄技巧,以及专门对付蜘蛛的毒液。这种理论被称为“偷窃寄生行为起源假说”。

一种孔蛛,学名为Portia schultzi一种孔蛛,学名为Portia schultzi

  无论这种奇特行为的起源如何,拟态蛛都是非常成功的捕食者。科学家已经对超过160个拟态蛛物种进行了正式描述。除了南极洲,拟态蛛在其他大陆上都有分布。

  “我们只研究了一小部分拟态蛛的生物学,但对于大部分物种,我们对它们的生活史和行为一无所知,”乔治华盛顿大学的古斯塔沃·霍米加(Gustavo Hormiga)说,“例如,我们对南美洲热带地区美丽、奇特的 Gelanor属拟态蛛几乎完全不了解。”

  在 Gelanor属物种中,雄性的触肢——用来给雌性授精的特化足——长度相当于其躯体的两倍,这使它们可以在较远的距离为雌性授精。“对于其他种类的蜘蛛,交配需要双方非常靠近,”霍米加说道。保持距离的交配是非常有用的预防措施,因为拟态蛛有很强的侵略性,并且具有致命的毒液,随时准备捕食其他蜘蛛——包括自己的同类。

  不过,拟态蛛也有温柔的一面。在2016年发表于《支序分类学》(Cladistics)杂志的一篇论文中,霍米加和他的学生莉吉亚·贝纳维兹(Ligia Benavides)描述了5个新的拟态蛛物种。他们还首次报道了雌性拟态蛛照顾幼体的行为。

  在蛛形纲中,母亲照顾幼蛛是相对普遍的现象。有些母蛛只是将食物吐出来喂给幼蛛,而另一些则达到了让幼蛛以自己尸体为食的程度。不过,在拟态蛛中,科学家此前还从未发现过母亲照顾幼体的行为。

  “在野外,我们观察了拟态蛛属(Mimetus)、Anansi属和突腹蛛属(Ero)雌蛛照顾卵和幼体的行为。拟态蛛可以是很好的母亲,”贝纳维兹说,“在某些情况下,雌蛛会把卵平均放置在叶片背部的一张小网上。如果我移动了网,或者触摸它,雌蛛就会把所有的卵或幼体快速收拢起来,弄成一个球,然后带走以保护它们。”

  模拟猎物以引诱其他蜘蛛的行为——被称为“攻击性拟态”——并不是拟态蛛独有的。事实上,在蛛形纲中,这种行为至少有过另外两次独立演化的过程。

  跳蛛科孔蛛属(Portia)的物种同样会模仿猎物,拨动其他蜘蛛的蛛网,引诱它们过来并加以捕食。与其他跳蛛一样,孔蛛具有大大的眼睛,并且主要依靠视觉来寻找猎物。相比之下,拟态蛛似乎更多地依赖触觉。在实验室中,把眼睛盖起来并不会影响它们对其他蜘蛛的攻击。

  拟态蛛和孔蛛在演化史上是相当晚出现的类群,而另一类同样捕食其他蜘蛛的蜘蛛——古蛛科(Archaeidae)——则非常古老,甚至在有翅昆虫出现之前就已存在。

  古蛛在英文中被称为“pelican spider”,意思是“鹈鹕蛛”,这源于它们具有像鹈鹕一样延长的头部和螯肢。它们会用一只螯肢刺入猎物体内,然后用另一只螯肢注入毒液。

  古蛛一直是以其他蜘蛛为食,而拟态蛛则是由结网蜘蛛演化而来。1854年,古蛛第一次在琥珀化石中被发现,但直到1881年,人们才在马达加斯加岛发现了活体。

  “所以,如果你比昆虫还要古老,你会吃什么?很可能就是其他蜘蛛,”哈姆斯说,“这就是它们具有如此奇特形态的原因。”虽然看起来很奇怪,但对于这些蜘蛛来说,以其他蜘蛛近亲为食不失为一种不错的生存手段。

空调如何改变世界

想象一下,如果我们能够随意地控制天气,按一下按钮,天气就能变得温暖或凉爽,潮湿或干燥,那将会意味着什么?  想象一下,如果我们能够随意地控制天气,按一下按钮,天气就能变得温暖或凉爽,潮湿或干燥,那将意味着什么?
空调是成就现代经济的50大发明之一空调是成就现代经济的50大发明之一

  

        想象一下,如果我们能够随意地控制天气,按一下按钮,天气就能变得温暖或凉爽,潮湿或干燥,那将意味着什么?

  答案将会有很多:不再有干旱和洪水,不再有热浪和结冰的道路,沙漠将变成绿洲,农作物将不再枯萎。事实上,为了改变气候,人类提出了一些听起来很不可思议的主意,包括在大气层上层喷洒硫酸,或是往海水里抛洒生石灰。

  然而,即使科技发展到今天如此先进的地步,我们还是无法对天气进行精确的控制——至少是在室外如此。从空调发明之后,我们已经能够控制室内的“气候”,而这也带来了一些深远而且意想不到的影响。

  自从我们的祖先掌握用火之后,人类便能够自己取暖,相比之下,降温的挑战性更大一些。脾气古怪的罗马皇帝埃拉伽巴路斯曾经派遣奴隶到高山上挖取冰雪,然后堆在他的花园里,利用微风将凉爽的空气吹到室内。

在人工制冰技术出现之前,如果新英格兰州的冬天变得温和,就有可能导致一场“冰荒”。在人工制冰技术出现之前,如果新英格兰州的冬天变得温和,就有可能导致一场“冰荒”。
威利斯?开利很快发现了这种湿度控制设备具有更广泛的应用潜力威利斯·开利很快发现了这种湿度控制设备具有更广泛的应用潜力

  

湿度问题

  毫无疑问,这并不是一个可以推广的解决方法。但是直到19世纪时,美国波士顿一位名叫弗雷德里克·图多尔(Frederic Tudor)的企业家还通过类似的方法,在解决降温问题的同时积累了大量的财富。他从冬天新英格兰的冰冻湖泊里切取冰块,用锯末进行隔热,然后装船运到加勒比海、欧洲甚至遥远的印度等地区,帮助那里的人们度过炎热的夏季。在人工制冰技术出现之前,如果新英格兰州的冬天变得温和,就有可能导致一场“冰荒”。

  我们所熟悉的空调出现在1902年,但在它最初出现时,却与人类的舒适需求无关。当时,纽约的Sackett & Wilhelms印刷出版公司在进行彩色印刷时时常会受到湿度的影响。例如,为了印出4种颜色,同一张纸必须印刷4次,而如果两次印刷之间湿度发生改变,那纸张就会轻微膨胀或收缩,即使1毫米的变化都会使最终效果变得非常糟糕。

  这家印刷出版公司找到了制作暖气机的水牛城锻造公司,希望对方开发一个控制湿度的系统。一位名叫威利斯·开利(Willis Carrier)的年轻工程师发现,装有压缩氨的线圈可以使循环空气降温,并使其湿度稳定控制在55%。印刷出版公司的问题迎刃而解。

  更广泛的应用

  水牛城锻造公司很快就开始向那些饱受湿度问题之苦的地方出售威利斯·开利的发明,比如面粉厂和吉列剃须刀集团——过度潮湿会使剃须刀生锈。

  对这些早期的工业客户而言,把温度降低到对工人更加舒适的水平并不重要,这只是附带的好处。但是,威利斯·开利很快发现这种湿度控制设备具有更广泛的应用潜力。到了1906年,他开始探索将这种“舒适”应用到剧院等公共建筑物上。

  这是一个明智的选择。历史上,剧院往往会在夏季关门歇业,因为此时会面临多种安全隐患:没有窗户,人群拥挤在一起,在电灯出现之前还需要用火来提供照明。新英格兰的冰块在一段时间内曾短暂流行过。1880年夏天,纽约的麦迪逊广场花园一天内使用了4吨冰块,一台2.4米的风扇在冰块上方吹气,然后通过管道将冷却空气吹向观众。

  威利斯·开利的“气候调节器”显然更加实用。在电影院迅速成长的20世纪20年代,大众第一次感受到了空调的凉爽,这在当时也很快成为了电影的一大卖点。

空调的发明改变了美国所谓“太阳带”地区的建筑结构空调的发明改变了美国所谓“太阳带”地区的建筑结构

  

引领变革的技术

  好莱坞夏季大片的传统和大型购物商场的崛起,都可以直接追溯到威利斯?开利的发明。但是,空调不仅仅能提供便利,它还是一项革命性的技术,对人类在哪里生存以及如何生存都有着深远影响。

  电脑如果过热或过于潮湿,就会停止工作,因此空调可以使服务器场不间断工作,以维持互联网的运行。事实上,如果工厂无法控制空气质量,我们根本就无法得到制造电脑所需的硅芯片。

  空调还使建筑发生了变革。从前如果想在炎热气候下建造一座凉爽的建筑,就意味着厚厚的墙壁和高高的天花板,还需要阳台、庭院和背向阳光的窗户。在美国南部流行一种带通道的住宅(dogtrot house),即把房子中间辟为过道,以利于通风。在空调出现之前,建设玻璃幕墙的摩天大楼并不明智——在高层工作的人无疑会受到炙烤。

  空调也改变了人口分布。如果没有空调,我们很难想象迪拜或新加坡这样的城市会崛起。在20世纪的下半程,美国的住宅单位快速增长。所谓的“太阳带”——美国南部北纬37度以南的温暖地区,从加利福尼亚州到佛罗里达州——占美国总人口的比例从28%暴涨到40%。

  随着许多退休人员从北方移居到南方,他们也改变了当地的政治平衡。作家史蒂文·约翰逊(Steven Johnson)很自信地宣称,正是空调成就了罗纳德·里根的当选。里根在1980年掌权,当时美国人使用的空调数量超过全球一半以上。

  从很多方面看,空调的快速发展是一件好事。研究表明,空调降低了酷热天气时的死亡率。酷热会使监狱囚犯变得暴躁,而空调可以使他们冷静下来。当考场的气温超过21或22摄氏度时,学生在数学考试中的分数便开始下降。在办公室内,空调可以使上班族更有效率。根据早期的一项研究,空调使美国政府的打字员多做了24%的工作。经济学家们也自此证实了生产力与保持凉爽之间的关系。

在地铁运输系统里,列车的冷却系统也会使月台上的人们感到闷热。在地铁运输系统里,列车的冷却系统也会使月台上的人们感到闷热。

  

难以忽视的现实

  美国经济学教授威廉·诺德豪斯(William Nordhaus)根据经纬度将全世界划分为许多单元,并列出每个单元内的气候、经济产出和人口。他发现,平均气温越高的地方,人们的生产力水平就越低。

  另一项研究显示,对于气候炎热的国家,气温高于平均值的年份不利于生产力的提高,而在气温较低的年份则恰好相反。研究者指出,生产力的峰值出现在气温18到22摄氏度的时候。

  然而,一个不容忽视的问题是:当你把室内变得凉爽时,代价是室外变得越来越热。在美国亚利桑那州凤凰城进行的一项研究显示,由空调排放到室外的热空气会导致城市夜间温度上升2摄氏度。当然,气温的上升会使空调使用得更多,从而使室外变得更热。在地铁运输系统里,列车的冷却系统也会使月台上的人们感到闷热。

  接着是空调的能量来源问题。空调运行所需的电能主要来自天然气或煤炭的燃烧,而空调机所用的冷却剂泄漏之后也会成为强效的温室气体。

  目前的空调技术已经越来越清洁、环保。不过,对空调的需求增长得如此迅速,即使是最乐观的估计,到2050年时,空调对能源的消耗都将增长8倍。对于气候变化问题而言,这是一个令人担忧的消息。毕竟,控制室外的气候远远超出了目前人类的能力范围。