有毒哺乳动物沟齿鼩:像毒蛇一样猎杀小动物

在大多数人的印象中,哺乳动物的典型形象是长着保持身体温暖的皮毛,用乳汁哺育后代,以及拥有体积相对较大的大脑。只有极少的哺乳动物会像芋螺或毒蛇一样,具有能使猎物一击致命的毒液。在为数不多具有毒腺并能够释放强效毒素的哺乳动物中,沟齿鼩显得尤为神秘。更奇特的是,这种类似鼩鼱的动物鼻子里长有一个类似人体髋部的球窝状关节,使它们的鼻子极为灵活。此外,雌性沟齿鼩的乳头位置有些奇葩……让我们到后面再说。

在分类学上,沟齿鼩属于鼩形目沟齿鼩科沟齿鼩属,现生有两个物种:古巴沟齿鼩(学名:Solenodon cubanus)和海地沟齿鼩(学名:Solenodon paradoxus),分别生活在古巴和伊斯帕尼奥拉岛(加勒比海地区的第二大岛,东西两侧分别为多米尼加和海地)上。

如果你走入古巴或伊斯帕尼奥拉岛的森林,请先尝试深呼吸一下。空气中可能会有点山羊的味道:类似麝香,混杂着泥土气息,可能有点像湿透的狗发出的气味,绝对会让你感到刺鼻。这种气味来自沟齿鼩腋部的腺体。接下来,请看看你的脚下。你可能会在泥土中找到一些奇怪的圆锥形洞穴,洞口边缘有不少抓痕。

此时你已经距离沟齿鼩不远了。它们通常在夜间捕食,用高度灵活的长鼻子伸到土壤中,在植物根系周围寻找无脊椎动物,比如蚯蚓和昆虫。它们长有许多敏感的胡须,能帮助感觉土壤里的一切,对于视力并不算太好的沟齿鼩来说,这一点非常重要。

生态学家乔·努涅斯米诺(Joe Nunez-Mino)说:“它们长着非常小的眼睛,视力似乎不是特别好,不过对光线十分敏感。”努涅斯米诺养了几只沟齿鼩,每当开灯的时候,它们就疯了一样乱窜。很显然,这是一种在夜间活跃的动物。

你需要足够幸运才能在野外环境中遇到沟齿鼩。这是一种非同寻常的哺乳动物。它们的外形就像一只大老鼠,又有点像粗壮的鼩鼱。它们的身长能达到2832厘米(从鼻子到臀部),尾巴长度可达1826厘米,重量在0.71.0千克之间。它们的指甲长而尖,行走时会呈现摆动不定的步态。哺育幼崽的雌性沟齿鼩尤为奇特。它们的乳头有点像是长在后腿的“胳肢窝”里——靠近尾部,几乎就在屁股上——有时候还会拖着幼崽到处跑。

虽然形态特征略显奇葩,但如果你有幸遇到沟齿鼩的话,请千万不要尝试触摸它们。不仅因为沟齿鼩处境濒危,而且因为它们咬你的时候会像毒蛇一样释放毒素,这在哺乳动物中极其罕见。某些水鼩和北美短尾鼩也会用毒液捕猎,雄性鸭嘴兽的后腿上长有毒刺,不过它们只用其来打败竞争者,或者是作为防御。

沟齿鼩的唾液腺位于下颚,能分泌一种神经毒素。带有毒素的唾液能通过门齿内侧的沟注入猎物体内——这也是它们被称为“沟齿鼩”的原因。沟齿鼩要做的就是咬开猎物的皮肤——或者昆虫的外骨骼表皮——使毒液能够进入其体内发挥作用。

从极少的人类被咬报告来看,沟齿鼩的毒素似乎也很难捱。中毒症状类似毒蛇咬伤,包括局部肿胀和严重疼痛,持续时间可能长达数日。如果幸运的话,你可能只会被“干咬”,也就是受点皮外伤,但没有毒液进入。从节省能量的角度来说这很合理。毒蛇知道如何随机应变,“蛇类经常会咬一下而不注入毒液,因为使用毒液其实很浪费,除非真的有必要,”努涅斯米诺说道。

沟齿鼩的毒液能使蜥蜴等小动物丧失运动能力。在实验室中,科学家发现注入了沟齿鼩毒液的小鼠出现呼吸困难、肌肉震颤和瘫痪等症状。此外,沟齿鼩并不会满足只捕猎比自己小的动物。“有报告称,一只圈养在伦敦的沟齿鼩吃掉了一整只鸡,”巴西南里奥格兰德联邦大学的分子生物学家罗德里戈·利加波尔·布朗(Rodrigo Ligabue Braun)说,“它咬了一只鸡,然后把想吃的所有部分都吃掉了。”

或许我们可以从同样具有毒液的某些鼩鼱来推测沟齿鼩的行为。在杀死猎物之后,沟齿鼩可能也不会立刻就把猎物吃掉。鼩鼱经常在咬伤猎物并使其无法动弹之后,把猎物拖到洞穴中;它们会过一会再回来吃掉这些还昏迷不醒的小动物。沟齿鼩可能也有同样的行为方式。

那么,为什么沟齿鼩会在哺乳动物中独树一帜,演化出攻击性的毒液呢?事实上,问题可能不在于沟齿鼩如何演化出毒液,而在于其他哺乳动物为什么会失去这项技能。

如今的地球上,哺乳动物可谓是最出风头的动物类群,然而在几千万年前,弱小的哺乳动物只能东躲西藏,活在恐龙的阴影之下。许多古老的哺乳动物可能都具有毒液,用来抵御掠食者。恐龙的灭绝使地球生命的格局发生了剧烈变化。“从演化的角度看,”布朗说,“在一个猎物和掠食者跟以前很不一样的环境里,你需要耗费过多的资源才能制造出毒液。”因此,哺乳动物在演化中逐渐抛弃毒液也就情有可原了。

无论是出于何种原因,沟齿鼩依然保留着这种独特的武器。其实,沟齿鼩本来就是相当古老的哺乳动物,大约在7600万年前分化出来——不久之后(演化史的角度)恐龙就因为小行星撞击地球而遭遇灭绝厄运。不过,布朗指出,关于哺乳动物毒液演化的话题依然存在许多争论。早期哺乳动物或许也很少具有毒液,而沟齿鼩可能一直都是一个异类。

虽然毒液能给沟齿鼩带来食物并抵御自然天敌,却无法对抗来自人类的压力。古巴和伊斯帕尼奥拉岛上的栖息地破坏使沟齿鼩的处境变得越来越艰难。人类带来的入侵物种对沟齿鼩的伤害不啻于一场大屠杀。殖民地时代,有人将原产于亚洲的红颊獴(学名:Herpestes javanicus auropunctatus)引入加勒比海地区,用来捕猎蛇和老鼠,而沟齿鼩也成为它们的猎物。

在伊斯帕尼奥拉岛上,狗对沟齿鼩的威胁尤为严重,“尽管我们也记录或听说过狗被沟齿鼩咬伤之后,可能因为毒液而死掉的案例,”努涅斯米诺说道。另一个威胁来自野猫,它们可能不会直接捕杀沟齿鼩,但已经成为沟齿鼩的竞争对手:野猫同样以沟齿鼩赖以生存的蜥蜴和较大的昆虫作为食物。

古巴沟齿鼩一度被认为已经灭绝,直到2003年又发现了活的个体。海地沟齿鼩也曾被认为灭绝,但可能更多是因为它们神秘的习性,而非较低的种群数量。近期的研究显示,海地沟齿鼩在伊斯帕尼奥拉岛上广泛分布,但也受到栖息地退化的威胁。动物保护工作者正在努力拯救这两种神奇而古老的哺乳动物。一些非盈利机构正在与当地组织和政府部门合作,对沟齿鼩展开更加深入的研究,包括种群情况和毒液组成等。

原文:https://www.wired.com/2016/02/absurd-creature-of-the-week-the-mystery-of-solenodon-the-mammal-that-bites-like-a-snake/

关于鱼类“阴茎”:用鱼类”色情片”研究雌鱼对雄鱼偏好

在繁殖问题上,大多数鱼类都是体外受精,即雄鱼和雌鱼分别将精子和卵子排到水中,让它们自然结合。不过,剑尾鱼属(Xiphophorus)鱼类与大部分鱼类不同,它们是在体内受精,并能“生出”活的仔鱼。为了实现这一过程,雄性剑尾鱼演化出了用于授精的体外生殖器官,这在鱼类中独树一帜。许多人很自然地想到一个问题:对剑尾鱼而言,这个生殖器官是否越大越好?一项新研究显示,雌性剑尾鱼对雄鱼的青睐程度与其生殖器的大小并没有必然联系。没错,大小固然重要,但更重要的是雄鱼如何使用它——这一切都是在雌鱼足够健康,能做出“明智”判断的前提下。

  要澄清一点的是,雄性剑尾鱼的生殖器官其实与人类的截然不同,它其实是肛门附近高度特化的臀鳍的一部分,呈细长的折叠状,末端具有钩子和奇特的小片。这样的器官被称为“生殖足”(gonopodium),尽管从演化的角度上,生殖足在本质上与哺乳动物的阴茎完全不同,但功能是一样的,都是将精子送入雌性的体内,使卵子受精。因此,生殖足可以说就是鱼类的阴茎。不同剑尾鱼属物种的生殖足长度有很大差异,同一物种的雄性个体之间也各不相同。这为科学家研究剑尾鱼属雌鱼对雄鱼的选择是否会影响生殖足大小的问题提供了机会。

  剑尾鱼属鱼类原产于中美洲的水道中,它们的名称来源于雄鱼尾鳍具有特别长的剑状延伸突——称为“尾剑”。在一些剑尾鱼物种中,所有雄鱼都是“求爱型”,会利用尾剑和炫耀性的动作说服雌鱼进行交配;而在另一些剑尾鱼物种中,一部分雄鱼是求爱型,其他雄鱼则是“偷袭型”,即体型较小的雄鱼会跳过繁琐的求偶步骤,转而采取所谓的“替代生殖策略”。由于求偶的方法是直接由父代传递给子代,因此会求爱的雄鱼总是产下会求爱的仔鱼,而专事偷袭的雄鱼后代也是偷袭型。

  对于剑尾鱼属雄鱼在生殖足长度和求偶方式之间的联系,墨西哥韦拉克鲁斯生态学研究所的科学家对剑尾鱼属雌鱼如何在混乱无序的生殖足,以及花里胡哨的求偶表演中判断并选择青睐的对象进行了研究。通过观察雌鱼对不同长度生殖足,以及对不同雄鱼交配行为的反应,科学家确定了影响雌鱼选择的重要因素,以及这些因素对应的环境条件。

雄性和雌性剑尾鱼雄性和雌性剑尾鱼

  在发表于《英国皇家学会会刊B辑》(Proceedings B of the Royal Society)的论文中,研究人员阐述了剑尾鱼属雌鱼在评估追求者的生殖足和华丽尾鳍时,可能演化出了一种小心翼翼的策略,兼顾了在危险栖息地中的生存和风险。

  研究团队从墨西哥野外采集了两种剑尾鱼,分别是剑尾鱼(学名:Xiphophorus hellerii)和多线剑尾鱼(学名:Xiphophorus multilineatus),前者的雄鱼均为求爱型,后者则具有求爱型和偷袭型。对于这两个物种(以及两种雄鱼求偶策略),研究人员都分别拍摄了雄鱼与雌鱼互动和求爱的视频。利用Photoshop软件,研究人员对这些短视频逐帧进行处理,把画面中的雌鱼完全去掉,然后把雄鱼的生殖足长度拉长或缩短30%,以代表生殖足的长度范围。如此这般,就有了6段视频:每个物种按生殖足长度分为三类。接下来,研究人员向雌鱼播放了这些视频片段,观察它们如何选择不同生殖足长度的雄鱼。研究人员主要根据雌鱼靠近视频中雄鱼的速度,以及它们在屏幕前停留的时间作为评判指标。

  换句话说,科学家在本研究中其实所做的,其实就是拍摄、编辑和放映“剑尾鱼色情片”,然后观察雌鱼看到片中雄鱼时是会兴奋还是厌烦。

  在只有求爱型雄鱼的剑尾鱼中,雌鱼更青睐的是具有较小生殖足的雄鱼。同样的情况也出现在多线剑尾鱼的两类雄鱼中。然而,当研究人员把雌鱼的相对健康情况考虑进去之后,雌鱼对求爱型和偷袭型雄鱼的偏好又出现了差别。

  实验之前,研究人员测量了所有雌鱼的体密度。体密度越高,表明鱼体含有的脂肪和蛋白质就越多,也就意味着具有更加健康的“身体状态”。尽管更为柔弱的雌鱼并不太关注求偶方式(而只在意生殖足长度),但肌肉更为发达、更加健康的雌鱼则有着非常特殊的品味。总而言之,它们青睐的是生殖足较短的求爱型雄鱼,而对于偷袭型雄鱼,它们更喜欢具有较长生殖足的个体。随着雌鱼身体条件的提高,这种偏好就更加明显。

一条雄性剑尾鱼属鱼类,与研究中所用的物种是近亲一条雄性剑尾鱼属鱼类,与研究中所用的物种是近亲

  大体重雌鱼中这种偏好分别的原因,很可能根植于所有地球生命的共同追求:确保自身和后代的存活。更健康的雌鱼通常年龄更大,经验更丰富,并且更具备躲避掠食者(通常是更大、更凶猛的鱼类)威胁的能力。这使它们能承受多一点风险,并利用更好的自身条件为下一代带来好处。正常情况下,与生殖足较长的雄鱼相处其实很危险。对于求爱型雄鱼来说尤其如此,它们本身在环境中就已经非常惹眼,吸引着掠食者的注意力,而长长的生殖足可能会增大在水中的阻力,使它们更难以逃脱险境。与它们在一起时,雌鱼被掠食者吃掉的风险也大大增加。因此,对求爱型雄鱼来说,更大的生殖足其实弊大于利。相比之下,对于其貌不扬的偷袭型雄鱼,更大的生殖足可能有着更多的好处。偷袭型雄鱼与雌鱼的交配过程短暂而混乱,并且常常伴随着追逐,因此较长的生殖足可能会大为提高受精的成功率。

  考虑到生殖足长度带来的后果,以及雄鱼“固执”地将求偶方式传递给后代的特征,我们可以推测,身体健康、甘冒风险的雌鱼为了后代的安全,会变得十分挑剔。通过在生殖足长度和求偶方式之间选择最佳的组合,而不是只考虑最安全的选项,这些雌鱼或许能确保在最好的条件下孕育后代。

  这项研究揭示了动物界中社会行为、竞争和生殖系统演化之间复杂而微妙的关系,再一次表明生物学现象往往有着许多间接的原因,并经常隐藏在我们意想不到的地方。

原文:https://gizmodo.com/for-fish-penises-bigger-isnt-always-better-1821014832

有关电击大脑

连线上面的原文:

What Happens If You Apply Electricity to the Brain of a Corpse?

=============================================

一个人类大脑的模型

对人类尸体的大脑进行电击会发生什么?

有些事情好像已经成为人类的一种习惯,比如对大脑进行电击。在古希腊时代就有人这么干了,那时有医师用电鳗来治疗头疼和其他疾病。今天,我们延续了这种疗法。神经科学家运用电流刺激患者的大脑,来激发大脑功能,或治疗抑郁症等疾病。

外部的电流之所以会对大脑功能产生影响,是因为我们的神经细胞之间的交流便是通过电信号和化学物质完成的。如今,这一认识已经深入人心,而就在两个世纪之前,科学家对神经系统的运作还深感困惑。

艾萨克·牛顿和其他一些人认为,我们的神经之间,以及神经和肌肉之间是通过振动互相交流的。当时另一个观点认为,神经可以分泌出某种液体。还有一个源自古代的神秘观点——现在依然流行——称,大脑和神经中充满了一种神秘的“生命活力”(animal spirits)物质。

“动物电”

到了18世纪,人类对电的了解越来越多,将电力应用于治疗身体和精神疾病的疗法(即电疗法)也变得十分流行。不过,当时的科学家并不清楚人类的神经系统能自己产生电流,并利用电信号进行信息传导。

在第一批涉足神经电传导领域的科学家先驱中,最著名的当属意大利物理学家路易吉·迦伐尼(Luigi Galvani,1737~1798)。迦伐尼的大部分实验都是以青蛙的腿部和神经为材料,揭示了在自然或人工机器放电的刺激下,青蛙的肌肉会发生抽搐。他因此提出了“动物电”的概念,包括人类在内的动物,都能在体内自发地产生电流。

“我认为,已经可以充分确定在动物体内存在着一种电流……这里说的是我们惯称的‘动物’的综合概念……”他写道,“在肌肉和神经中……它表现得最为清楚。”

神经科学的惊悚历史

然而,后来的实验结果令迦伐尼十分失望,他没能通过电击大脑使面部或周边的肌肉出现反应。后来,他的外甥乔凡尼·阿尔蒂尼(Giovanni Aldini,1762~1834)进行的实验却支持了他的结论。1802年,阿尔蒂尼对一名被砍头犯人的头部进行了电击。他在犯人两只耳朵内放入金属线,连接上简陋的电池,然后轻弹开关。“一开始,我观察到面部所有的肌肉出现了强烈的收缩,表情十分扭曲,就像是最狰狞的鬼脸,”他在笔记中写道,“眼睑的反应尤为显著,尽管人头上的反应不如牛头上的强烈。”

在这一时期,有关电在人和动物神经系统中扮演的角色,还存在着激烈的科学争论。迦伐尼最著名的争论对手亚历山德多·伏打(Alessandro Volta)认为,动物体内并不能自己产生电力。在此背景下,两个不同的阵营开始借助公众关系来推广自己的观点,而这恰好是阿尔蒂尼的优势所在。在某种程度上,阿尔蒂尼就像个马戏团老板。他巡回展示着自己的“惊悚”实验。1803年,他在伦敦的皇家外科医学院进行了一次轰动性的公开演示,所用的材料是刚刚在纽盖特(伦敦西门的著名监狱)被绞死的谋杀犯托马斯·福斯特(Thomas Forster)的尸体。阿尔蒂尼将导电杆插入死者的口、耳和肛门中。

在大批围观人群中,有一个人后来写道:“在一开始对面部的刺激中,死去罪犯的下巴开始颤抖,周围肌肉的扭曲令人恐惧,还有一只眼睛睁开。接下来的演示中,他的右手举起然后紧握,大腿和小腿也有了活动。对一些不知情的围观者来说,这一切看上去仿佛是那个卑鄙的罪犯第二天就要复活了。”

在这场广为传播的实验演示之时,《弗兰肯斯坦》的作者玛丽·雪莱年仅五岁。不过,她显然在当时有关电流和人体的争论中获得了启发。事实上,在1818年她的小说出版之时,另一场戏剧性的公开演示也同期上演。苏格兰医生、学者和化学家安德鲁·尤尔(Andrew Ure)在格拉斯哥,运用电流使一具尸体出现了类似深呼吸的状态,甚至能伸出手指指向观众。

死亡是一个过程

如果身体已死,那其体内的神经为何还能对外来的电刺激产生反应?1818年,一个流行但错误的观点认为,电是生命的活力所在,通过对尸体进行电击,可以使其重新获得生命。事实上,在安德鲁·尤尔的演示中,许多观众就觉得非常困扰,以致于要赶紧离开那栋建筑物。据报道还有个人现场昏倒。现代对神经信号传导的认识已经渐渐破解了这类观点,但你依然不难想象,类似安德鲁·尤尔和阿尔蒂尼的演示如果发生在今天,相信也会造成非常令人不安的后果。关于电流如何使尸体“复活”,有个强有力的解释来自英国遗传学和生理学家弗朗西丝·阿什克罗夫特(Frances Ashcroft)的精彩著作——《生命的火花》(The Spark of Life):

“当动物(或人)进行最后一次呼吸之后,其体内的细胞并没有立即死去,这也是我们可以在个体之间进行器官移植和血液注入的原因,”她写道,“除非已经变成碎屑,否则一个多细胞生物体的死亡极少是即刻发生的事件,而是一个逐渐停止、分阶段消亡的过程。在个体死亡之后,神经和肌肉细胞会继续工作一段时间,这也使通过电流进行‘复活’成为可能。”

以今天的标准来看,阿尔蒂尼和安德鲁·尤尔的实验似乎有点令人毛骨悚然,但这些实验激发了后来的神经生物学家和相关领域的科学家,在历史上具有重要的地位。