我们为什么害怕低温疗法?

利用先进的低温冷却方法,我们已经可以把大脑活动水平降到极低,将心脏停止跳动之后的死亡时间往后大大推迟。

“一些面色苍白、身体虚弱的人晕倒了,僵直地死在雪地上……他们看起来走得无知无觉,不知道要往哪里去……总而言之,当无法继续行走,既没有力量,也没有意志时,他们就会跪倒在地……他们的脉搏微弱,不易察觉;有些人呼吸很少,几乎感觉不到,只是和其他人一起抱怨和呻吟。有时候眼睛会睁开,眼神定住,没有光泽,呆滞,散乱,而大脑已经陷入了平静的精神错乱中。”

  这是法国医生皮埃尔·让·莫里绍-博普雷(Pierre Jean Moricheau-Beaupré)在1826年出版的《一篇关于寒冷作用和性质的论述》(A Treatise on the Effects and Properties of Cold)中描写的场景。这是对失温症最初和最完整的描述之一。所谓失温症,指的是人体温度下降到危险程度(35摄氏度以下)时的现象。莫里绍-博普雷描写的是他在1812年随拿破仑军队从莫斯科撤军时的经历,要等到将近80年后,“失温症”这个医学术语才会出现。

  失温症的英文“hypothermia”来源于希腊语,由表示“之下”的“hypo”和表示“热度”的“therme”组成。根据温度下降的程度不同,失温症有不同的症状,但最开始会表现为颤抖、协调性下降、动作吃力和失去方向感。极端情况下,患者心律会显著降低,同时记忆出现问题,思维混乱。在体温进一步降低之后,患者会开始做出不理智的决定,变得语无伦次。他们甚至会脱掉衣服,在临时之前寻找局限的空间(比如尝试钻进洞里)。目前我们还不是很清楚这一切发生的确切原因。

  然而,现在一些医生却在治疗中引入了这种令人难以忍受的病症,用来减缓病人的新陈代谢,使其存活下来。在科学界争论了几十年之后,如今失温症反而成为了阻挡死神步伐的工具。失温症的治疗价值在于它能够搁置细胞的生理学需要;毕竟,如果细胞在寒冷状态下变得迟钝,不需要那么多氧气和其他营养物质的话,那么在创伤或心脏骤停导致血液流动缓慢的情况下,病人的生命就能维持得更久。失温症和所谓“暂停生命”(suspended animation)的联系并不是巧合,后者是通过外在方法(如医疗科技)使人体进入冷冻状态。许多人希望这种方法能用在前往火星和第二个地球的太空旅程上,使宇航员的身体能保存多年时间。尽管失温症的确切机制十分复杂,但它却能减缓新陈代谢,在正常血液循环恢复之前推迟缺氧造成的损伤。

  低温疗法甚至已经开始界定生命的边界。过去,生与死的分隔只是心跳停止。后来,人们认识到大脑还可以在脉搏消失之后存活一段时间,心脏骤停的人只要大脑还未死亡,就可以再抢救回来。不过,血液循环停止之后,大脑存活的时间也非常有限。

  近年来,利用先进的低温冷却方法,我们已经可以把大脑活动水平降到极低,将心脏停止跳动之后的死亡时间往后大大推迟。这些成果可以使研究者拓展他们对濒死体验的研究。随着心肺复苏技术的发展,濒死体验的案例越来越多,一些已经报告心脏死亡的人在一段时间之后又重新“复活”。此外,低温冷却技术也重新点燃了对人体休眠的研究,通过低温冷却技术,宇航员可以度过漫长的星际旅程,对更遥远的星球进行探索。

  低温疗法最初只是作为局部治疗的手段。目前已知最早的应用记录出现于《艾德温·史密斯纸草文稿》(Edwin Smith Papyrus)。这是人类最早的医学著作,可以追溯到公元前3500年。艾德温·史密斯是这份手稿的第一位已知持有者,他在1862年从卢克索的一位交易商那里买到了这份手稿,后来文稿也以他为名。在大约公元前4、5世纪时,希腊的希波克拉底医学院提出用雪来包裹病人以治疗出血,可能是认为这样可以收缩血管。不过,直到18世纪时,一位名为詹姆斯·柯里(James Currie)的利物浦医生才实施了已知最早的全身低温治疗。他把健康的志愿者——都必须有献身的准备——浸没在温度低至6.5摄氏度的冷水里,时间长达45分钟。他试图借此找到方法来治疗沉船事故中遭受冷水创伤的水手。计量准确的温度计为詹姆斯·柯里的研究提供了巨大的帮助。

  在现代医学的曙光期之后,训练有素的医生通过科学方法进行诊断和治疗逐渐成为标准,情况又有了变化。美国神经外科医生坦普尔·费伊(Temple Fay)进行了颇具争议的先驱性研究,为低温疗法提供了依据。20世纪20年代晚期,当费伊还是一位医学生的时候,他被问到为什么转移性癌症很少出现于四肢。当时他还没有答案,但最后他提出,这是因为人的四肢具有相对较低的温度。他天才地把这一现象与他在自家位于马里兰州的农场里观察到的现象——温度降低会抑制小鸡胚胎的生长——联系起来。这就像一个“尤里卡”式的瞬间。到了1929年,费伊已经在费城的天普大学获得了教授席位。很快他就开始研究全身冷却的基础方法,比如用冰块包裹病人,并设计出多种用于局部冷却、可以放入颅骨之内的工具,包括一些体积较大、从今天的标准看来相当粗糙的设备。

  然而,费伊的原始方法激发了医院病房的批评和混乱。他在手术室里使用了大量的冰块——可以用浴缸装,价值高达150磅——时间可长达48小时。冰块的融水导致手术室一直处于水流不止的状态,必须不断吸水。而且,他冷却房间的方法就是简单地把窗户打开,不仅病人会暴露在当地严寒的冬天里,医院全体医护人员也遭了秧。最关键的是,当时还没有专门为这一用途设计的体温计(通常只能测直肠体温),体温计的准确性也有缺陷(当时的体温计还没有低于34摄氏度的刻度)。这一切使费伊在医护人员中变得极为不受欢迎,据一份报告称,医护人员曾经反抗过他的人体“冷却服务”。

  然而,费伊是天才的。在一份早期报告中,他引用了两个数据作为冷却疗法的结果,分别是11.2%的死亡率和95.7%的疼痛缓解率。关键在于,这些实验揭示了人类不仅可以忍受持续数天的低温(低至32摄氏度),而且在苏醒时病情会显著改善。

  直到20世纪80年代中期,麻醉科医师彼得·沙法(Peter Safar,1924年出生于维也纳,是心肺复苏的创始人)才不顾低温疗法的污点,开始大胆地进行实践。他在美国匹兹堡大学用狗作为医学模型,证实在心脏骤停之后,适度的大脑降温(33到36摄氏度)可以显著改善神经病理学情况,避免大脑损伤。通过这些发现,彼得·沙法成功复兴了低温疗法研究。他发明的疗法被称为“假死延迟复苏”(suspended animation for delayed resuscitation)。

  后来,一些在冷水浸没情况下存活下来的病例也促进了低温疗法的研究。例如,1999年,一位名为安娜·博根霍姆(Anna B?genholm)的实习医生在挪威北部滑雪时发生事故,发生了心脏骤停。她在冰层覆盖的冷水中待了80分钟,在四个小时没有脉搏之后,她的心脏又重新开始跳动,最终存活下来。

  新千年初,如今已成为休斯敦大学综合医院系统重症监护科主任的约瑟夫·瓦龙(Joseph Varon)将低温疗法提升到了新的高度。2005年,一位经历了溺水事故的游客被从墨西哥空运到休斯敦。“我把他空运到了休斯敦。他已经死了好几个小时。他们使他恢复了心跳,而最终通过冷却疗法,我们不仅使他的大脑恢复功能,而且健康情况良好,”瓦龙说道。该病例报告后来发表在《复苏》(Resuscitation)期刊上。“就在同一年,当教宗若望·保禄二世出现心脏骤停时,”瓦龙补充道,“我被请去梵蒂冈——为他进行冷却。”

  约瑟夫·瓦龙被业内人士称为“急冻医生”(Dr Freeze)。一开始他也像费伊一样受到医院同行的质疑。“当我开始在休斯敦这么做时,我用了大量的冰。我把房间温度降到很低,”瓦龙说道。不久之后,他就开始用降低体温的方法帮助病人预防由各种创伤——包括心脏骤停、中风和肝衰竭等——导致的神经损伤。他经常把病人的体温降到32摄氏度,时间可长达11天。2014年,刚经历中风的他使用低温疗法拯救了自己的生命。“我想到的第一件事就是:把我冷却下来!”瓦龙说道。

  瓦龙的低温疗法不断改进。现在,他使用多种先进的设备来进行局部和全身低温治疗,对于刚刚恢复心跳的心脏骤停患者,他通常把他们的体温降到32摄氏度。该技术还包括用水凝胶垫来降低体温的机器、一个控制体温的生物反馈机制,以及一条计算机控制的导管,使患者能在降温的时候保持清醒——进行恰当神经学评估的关键。

  此外,在枪伤或刀刺伤等严重创伤的病例中,研究者已经开始实践一项特别的临床试验。患者会经历极度的低温,体温降到10摄氏度,通常是在没有心跳或呼吸的时候。没错,这就像是在冷却“死者”,但是却能救他们的命。

  体温冷却能使创伤者原本极短的手术窗口期延长,特别是在那些要求不能出现失血的手术中。在匹兹堡和巴尔的摩一些严重创伤(枪伤和刀刺伤)发生率极高的社区中,研究人员正在进行一项被戏称为“紧急保存与复苏”(Emergency Preservation and Resuscitation,EPR)的试验。EPR被用作最后的救命稻草,应用于那些标准方法已不能奏效,受害者只有5%生存概率的情况。试验过程包括用循环冷却的盐溶液置换病人的血液,避免细胞和组织缺氧损伤。通过这一方法,病人能在一个小时的时间内重新具有心跳,但没有脉搏。试验的目标是通过比较10位接受EPR的病人与另10位没有接受EPR的病人的情况,观察结果是否有改善——即有没有活下来。官方结果目前还处于保密状态,公众无法获知。

  不过,负责这项实验的萨缪尔·提舍曼(Samuel Tisherman)还是非常乐观。他一直致力于推动低温技术的极限。早在20世纪80年代,当还是医学生时,他就与彼得·沙法合作研究“暂停生命”。现在,他的研究对象将接受常规化的冷却,体温从正常的37摄氏度降低到惊人的10摄氏度,时间持续约20分钟。提舍曼解释称:“我们需要快速做完,因为病人已经没有脉搏;整个理念就是减少身体对氧气的需求。”尤其重要的是,他们需要降低心脏和大脑的温度,因为这两个器官对缺氧最为敏感。病人一旦冷却,在没有脉搏或任何血压的情况下,会被转移到手术室。最后,在这些极端的条件下,外科医生将对病人实施手术,修复失血部位和其他损伤。当一切完成之后,医生开始缓慢提高病人的体温。“我们希望,当他们温暖起来之后,心脏会开始跳动,”提舍曼说道。

  当被问到目前试验有什么进展时,提舍曼笑道:“我们正在做这些,这就是进展!”看来我们还需要等待正式的结果公布,但毫无疑问,关键的里程碑时刻或许就在眼前。

  除了在急救上的应用,低温疗法或许有朝一日还能作为某种“暂停生命”,或称“人体休眠”的方式,就像科幻小说里经常描写的那样。这一概念可以追溯到20世纪60年代,当时美国和苏联之间的太空竞赛如火如荼,而现在人们似乎又重新燃起了兴趣,并将其称为“蛰眠”(torpor)。蛰眠可以为太空旅行带来很多好处。它能避免医学并发症,比如肌肉萎缩和骨密度损失,二者都是在零重力环境中长期生活所致。除了这些保护性目的,蛰眠还能带来一些重要的心理学益处。失去意识可以避免太空旅行中,长达数月时间生活在局限空间内所带来的极端压力和厌倦情绪,更不要说一个小团队在如此漫长的时间里可能出现的人际冲突。

  一些太空工程公司,比如总部位于美国亚特兰大的SpaceWorks公司,已经获得了包括美国航空航天局(NASA)“创新先进概念”(Innovative Advanced Concepts)项目在内的资助,正在进行人体休眠的研究。SpaceWorks公司的创新方法强调了可以节省大量的食物,以及废物处置和存储的空间,从而显著减少飞船的重量,进而降低任务成本。“我们通过一个现实可行的构想和他们接触,向他们展示了经济上的利益和实现这一切的数学方法,”美国海军雷摩尔空军基地外科服务部门主任道格拉斯·托克(Douglas Talk)说道。他从2013年开始就致力于SpaceWorks公司的项目。“我是一个医生,同时也是一个热爱科幻的超级书呆子,而这正是这些领域的完美融合!”他说道。

  SpaceWorks公司现阶段的计划包括一个短期形式的蛰眠,可以使太空旅行者每隔两星期就经历一次生命暂停状态。当体温每降低1摄氏度时,他们的新陈代谢速率就会降低大约7%。“我们知道有许多哺乳动物会冬眠,所以问题不是:哺乳动物能冬眠吗?”托克说,“而是:我们如何让人类也冬眠?能不能冬眠?我们知道我们能够做到短期的冬眠,甚至还有研究显示时间可能长达两个星期。”托克提到的是2008年在中国的一个病例,一位因动脉瘤而昏迷的女性被降温冷却了14天,以防止进一步的大脑损伤并促进恢复。不可思议的是,她最后完全康复了。

  单纯从概念上,我们从目前对低温蛰眠的了解可以直接联想到火星探险任务。托克表示,前往火星的旅行将从月球空间站开始,在那里“宇航员会获得一些蛰眠的体验,知道进入和离开蛰眠状态会出现什么情况”。SpaceWorks公司的计划之一是通过手术植入静脉注射管——称为“mediport”,类似目前用于癌症患者接受化疗时所用的经静脉输液港。太空旅行者还会使用一根通到胃里的食管来进行喂食。托克说:“这些事情的并发症发生率非常低。一旦乘员检查完毕,他们将前往蛰眠模块,然后进入他们的床铺,连接上监控和食物供给系统。然后,我们将降低他们居所的温度。我们启动蛰眠的方式与医院里的所做的不同——他们会使用大量的镇静药物。我们会使用药剂把核心体温降到32摄氏度,并降低代谢速率。”

  研制这种药剂是托克及其同事的主要目标之一。他们已经在猪身上进行了成功的试验。这一步很关键,因为“这是第一次通过药学方法使一种不冬眠的哺乳动物接近冬眠状态”。经过在月球基地的训练,太空旅行者将轮流进入蛰眠状态,确保一直有人负责其他人在蛰眠时的安全。

  在空间和时间上改变睡眠的自然属性可能会导致人类的内在特征发生改变。“按需冬眠”的能力意味着我们已经超越了内在的昼夜节律。我们的遗传学基础要求我们的生物学功能要与地球自转的节律同步。这种同步对调节睡眠模式、吃饭时间、荷尔蒙释放、血压和体温变化等是必不可少的。昼夜节律已经是我们作为人类的重要特征。如果低温冬眠的状态能使新陈代谢降到极低水平,并暂停我们的生物节律需求,那它会不会有延迟衰老的作用呢?火星旅行者能否重新获得在漫长往返旅途中用于蛰眠的时间呢?或者,畅想一下遥远的未来,星际探险者是否会在离开几百年甚至上千年之后才回到地球?

  托克并不确定人体冬眠是否会颠倒昼夜节律,但他表示,在人体中找到一个基础的、能触发冬眠的遗传学机制是有可能的。“最前沿的研究表明,存在某种被称为冬眠诱导触发子(hibernation-inducing trigger,HIT)的东西,”托克说,“这是一些存在于身体中,能触发冬眠和忍耐冬眠状态的化学物质。我认为在我们的DNA中,有某些片段具有以同样方式触发冬眠的能力,而这种能力已经在我们的演化过程中丢失了。”

  另一个对我们自身存在感的挑战来自于死亡边界的扩展。我们曾经把死亡定义为“心脏死亡”。当心脏停止跳动时,就意味着人已经死亡。后来我们把死亡的定义扩展为“脑死亡”——脑电波消失意味着你再也无法复活。现在,通过低温疗法,那些表现出心脏死亡和脑死亡症状的失温症患者也能被拯救回来,生命的边界再一次向外延伸。

  想一想1999年博格霍姆在滑雪事故之后接受治疗的那家挪威医院。在她之前,所有入院时没有脉搏的失温症患者都去世了——存活率为0。然而,在院方意识到患者的脑活动还能在心脏停止跳动之后持续数个小时,甚至可能长达数天时,他们开始尝试更为激进的复苏手段,使存活率提高到至少38%。

  在冰冻状态下送入医院的极端病例已经改变了我们对死亡的看法。2011年,一名心脏骤停的55岁男子被送往位于美国亚特兰大埃默里大学的医院,并被置于低温状态,以保护神经系统。经过神经学检查,医生们宣布他已经“脑死亡”。24小时之后他已经被送往摘取器官的手术室。然而,据发表于《重症医学》(Critical Care Medicine)期刊上的文章称,医生们后来观察到他的角膜反射、咳嗽反射和自主呼吸。尽管已经没有了复苏的希望(当然他也没有被活着摘除器官),但这样的例子向长期以来用于判断死亡时间的神经学检查提出了质疑。

  更加不可思议的视角来自那些应用新技术起死回生的病人。萨姆·帕尼亚(Sam Parnia)是美国纽约大学医学院重症和复苏研究的负责人,他做出了一些令人震惊的研究。帕尼亚一直致力于研究低温疗法复苏生命,不仅是为了拯救病人的生命,而且是为了回答一些基础的问题:死亡最终结束是在什么时候?是否可以逆转?我们能从死亡的另一面获得什么?以及意识在什么时候真正停止?他最近的研究工作表明,意识在心脏停止跳动之后还会持续许多分钟,并且可以通过大脑冷却、减缓细胞死亡的方法继续延长,从而使医生有机会逆转死亡过程,将病人从死亡线上拉回来。帕尼亚的研究中,有许多是通过低温的应用提高了治疗效果,显示大脑在死亡时是“安静平和的”;与多年来许多濒死体验报告的内容一样,在他的研究中,病人也描述了一道亮光的出现。

  低温疗法的进展令人不安,而这或许就是出现那么多争论的原因。部分阻力很现实:低温疗法可能会导致血液凝结大量减少,以及缺氧导致的组织损伤;这些都是造成许多低温意外受害者死亡的原因。事实上,这些症状被称为“死亡三要素”(triad of death,通常指严重创伤时出现的失温、酸中毒和凝血异常)。因此,在如何进行低温治疗的问题上一直没有达成一致。“温度、时间和持续时间将继续是争论的问题。每个人都有个体差异,因此希望找出某种适用于任何人的方法是不可能的,”瓦龙说道。

  从一开始进行EPR试验,提舍曼就一直在与医学界的质疑抗争。他的同事们尤其担心的是血液无法在如此低温的条件下凝结,对于失去脉搏或正在因失血过多而死亡的创伤者来说,这是非常严重的情况。不过提舍曼的回应是,他的病人已经处于极高的死亡风险中。“他们估计只有5%的存活概率,”他说,“那么,为什么不做一些新的尝试呢?”

  另一种批评意见是关于神经学后果。如果一个病人通过EPR从枪击或刀刺伤中存活了下来,之后会不会因为长时间大脑缺氧而导致长期严重的大脑损伤呢?“任何类型的心脏骤停都会伴随一个问题,无论有没有出现创伤,”提舍曼说,“如果你出现心脏骤停,无论有没有参加这个EPR试验,你都有活下来的机会,但也可能出现严重的脑损伤,这是与低温冷却无关的损伤风险。我们到底是增加还是降低了这一风险,我们并不知道。”他进一步指出,这个问题更多是在于能不能活下来。“通常情况下,复苏的病人可能会醒过来,活着并且活得很好,但也可能无法活下来。所以,我们不知道。没错,确实有风险。他们正在死去,而我们需要努力让他们活着并醒过来,”提舍曼说道。

  研究工作继续快速发展。低温疗法的发展已经扩展了意识和死亡的边界,让我们对人类的定义出现了争议,或许还将帮助我们前往其他星球。科学家将继续探索低温疗法带来的益处,开发更加有效的治疗手段,道路可能会十分曲折,并面临诸多困难,但也可能出现新的推动力。莫里绍-博普雷或许会对这一切感到无比惊奇。

原文:https://aeon.co/essays/how-freezing-patients-could-save-lives-and-even-reverse-death

有毒哺乳动物沟齿鼩:像毒蛇一样猎杀小动物

在大多数人的印象中,哺乳动物的典型形象是长着保持身体温暖的皮毛,用乳汁哺育后代,以及拥有体积相对较大的大脑。只有极少的哺乳动物会像芋螺或毒蛇一样,具有能使猎物一击致命的毒液。在为数不多具有毒腺并能够释放强效毒素的哺乳动物中,沟齿鼩显得尤为神秘。更奇特的是,这种类似鼩鼱的动物鼻子里长有一个类似人体髋部的球窝状关节,使它们的鼻子极为灵活。此外,雌性沟齿鼩的乳头位置有些奇葩……让我们到后面再说。

在分类学上,沟齿鼩属于鼩形目沟齿鼩科沟齿鼩属,现生有两个物种:古巴沟齿鼩(学名:Solenodon cubanus)和海地沟齿鼩(学名:Solenodon paradoxus),分别生活在古巴和伊斯帕尼奥拉岛(加勒比海地区的第二大岛,东西两侧分别为多米尼加和海地)上。

如果你走入古巴或伊斯帕尼奥拉岛的森林,请先尝试深呼吸一下。空气中可能会有点山羊的味道:类似麝香,混杂着泥土气息,可能有点像湿透的狗发出的气味,绝对会让你感到刺鼻。这种气味来自沟齿鼩腋部的腺体。接下来,请看看你的脚下。你可能会在泥土中找到一些奇怪的圆锥形洞穴,洞口边缘有不少抓痕。

此时你已经距离沟齿鼩不远了。它们通常在夜间捕食,用高度灵活的长鼻子伸到土壤中,在植物根系周围寻找无脊椎动物,比如蚯蚓和昆虫。它们长有许多敏感的胡须,能帮助感觉土壤里的一切,对于视力并不算太好的沟齿鼩来说,这一点非常重要。

生态学家乔·努涅斯米诺(Joe Nunez-Mino)说:“它们长着非常小的眼睛,视力似乎不是特别好,不过对光线十分敏感。”努涅斯米诺养了几只沟齿鼩,每当开灯的时候,它们就疯了一样乱窜。很显然,这是一种在夜间活跃的动物。

你需要足够幸运才能在野外环境中遇到沟齿鼩。这是一种非同寻常的哺乳动物。它们的外形就像一只大老鼠,又有点像粗壮的鼩鼱。它们的身长能达到2832厘米(从鼻子到臀部),尾巴长度可达1826厘米,重量在0.71.0千克之间。它们的指甲长而尖,行走时会呈现摆动不定的步态。哺育幼崽的雌性沟齿鼩尤为奇特。它们的乳头有点像是长在后腿的“胳肢窝”里——靠近尾部,几乎就在屁股上——有时候还会拖着幼崽到处跑。

虽然形态特征略显奇葩,但如果你有幸遇到沟齿鼩的话,请千万不要尝试触摸它们。不仅因为沟齿鼩处境濒危,而且因为它们咬你的时候会像毒蛇一样释放毒素,这在哺乳动物中极其罕见。某些水鼩和北美短尾鼩也会用毒液捕猎,雄性鸭嘴兽的后腿上长有毒刺,不过它们只用其来打败竞争者,或者是作为防御。

沟齿鼩的唾液腺位于下颚,能分泌一种神经毒素。带有毒素的唾液能通过门齿内侧的沟注入猎物体内——这也是它们被称为“沟齿鼩”的原因。沟齿鼩要做的就是咬开猎物的皮肤——或者昆虫的外骨骼表皮——使毒液能够进入其体内发挥作用。

从极少的人类被咬报告来看,沟齿鼩的毒素似乎也很难捱。中毒症状类似毒蛇咬伤,包括局部肿胀和严重疼痛,持续时间可能长达数日。如果幸运的话,你可能只会被“干咬”,也就是受点皮外伤,但没有毒液进入。从节省能量的角度来说这很合理。毒蛇知道如何随机应变,“蛇类经常会咬一下而不注入毒液,因为使用毒液其实很浪费,除非真的有必要,”努涅斯米诺说道。

沟齿鼩的毒液能使蜥蜴等小动物丧失运动能力。在实验室中,科学家发现注入了沟齿鼩毒液的小鼠出现呼吸困难、肌肉震颤和瘫痪等症状。此外,沟齿鼩并不会满足只捕猎比自己小的动物。“有报告称,一只圈养在伦敦的沟齿鼩吃掉了一整只鸡,”巴西南里奥格兰德联邦大学的分子生物学家罗德里戈·利加波尔·布朗(Rodrigo Ligabue Braun)说,“它咬了一只鸡,然后把想吃的所有部分都吃掉了。”

或许我们可以从同样具有毒液的某些鼩鼱来推测沟齿鼩的行为。在杀死猎物之后,沟齿鼩可能也不会立刻就把猎物吃掉。鼩鼱经常在咬伤猎物并使其无法动弹之后,把猎物拖到洞穴中;它们会过一会再回来吃掉这些还昏迷不醒的小动物。沟齿鼩可能也有同样的行为方式。

那么,为什么沟齿鼩会在哺乳动物中独树一帜,演化出攻击性的毒液呢?事实上,问题可能不在于沟齿鼩如何演化出毒液,而在于其他哺乳动物为什么会失去这项技能。

如今的地球上,哺乳动物可谓是最出风头的动物类群,然而在几千万年前,弱小的哺乳动物只能东躲西藏,活在恐龙的阴影之下。许多古老的哺乳动物可能都具有毒液,用来抵御掠食者。恐龙的灭绝使地球生命的格局发生了剧烈变化。“从演化的角度看,”布朗说,“在一个猎物和掠食者跟以前很不一样的环境里,你需要耗费过多的资源才能制造出毒液。”因此,哺乳动物在演化中逐渐抛弃毒液也就情有可原了。

无论是出于何种原因,沟齿鼩依然保留着这种独特的武器。其实,沟齿鼩本来就是相当古老的哺乳动物,大约在7600万年前分化出来——不久之后(演化史的角度)恐龙就因为小行星撞击地球而遭遇灭绝厄运。不过,布朗指出,关于哺乳动物毒液演化的话题依然存在许多争论。早期哺乳动物或许也很少具有毒液,而沟齿鼩可能一直都是一个异类。

虽然毒液能给沟齿鼩带来食物并抵御自然天敌,却无法对抗来自人类的压力。古巴和伊斯帕尼奥拉岛上的栖息地破坏使沟齿鼩的处境变得越来越艰难。人类带来的入侵物种对沟齿鼩的伤害不啻于一场大屠杀。殖民地时代,有人将原产于亚洲的红颊獴(学名:Herpestes javanicus auropunctatus)引入加勒比海地区,用来捕猎蛇和老鼠,而沟齿鼩也成为它们的猎物。

在伊斯帕尼奥拉岛上,狗对沟齿鼩的威胁尤为严重,“尽管我们也记录或听说过狗被沟齿鼩咬伤之后,可能因为毒液而死掉的案例,”努涅斯米诺说道。另一个威胁来自野猫,它们可能不会直接捕杀沟齿鼩,但已经成为沟齿鼩的竞争对手:野猫同样以沟齿鼩赖以生存的蜥蜴和较大的昆虫作为食物。

古巴沟齿鼩一度被认为已经灭绝,直到2003年又发现了活的个体。海地沟齿鼩也曾被认为灭绝,但可能更多是因为它们神秘的习性,而非较低的种群数量。近期的研究显示,海地沟齿鼩在伊斯帕尼奥拉岛上广泛分布,但也受到栖息地退化的威胁。动物保护工作者正在努力拯救这两种神奇而古老的哺乳动物。一些非盈利机构正在与当地组织和政府部门合作,对沟齿鼩展开更加深入的研究,包括种群情况和毒液组成等。

原文:https://www.wired.com/2016/02/absurd-creature-of-the-week-the-mystery-of-solenodon-the-mammal-that-bites-like-a-snake/

关于鱼类“阴茎”:用鱼类”色情片”研究雌鱼对雄鱼偏好

在繁殖问题上,大多数鱼类都是体外受精,即雄鱼和雌鱼分别将精子和卵子排到水中,让它们自然结合。不过,剑尾鱼属(Xiphophorus)鱼类与大部分鱼类不同,它们是在体内受精,并能“生出”活的仔鱼。为了实现这一过程,雄性剑尾鱼演化出了用于授精的体外生殖器官,这在鱼类中独树一帜。许多人很自然地想到一个问题:对剑尾鱼而言,这个生殖器官是否越大越好?一项新研究显示,雌性剑尾鱼对雄鱼的青睐程度与其生殖器的大小并没有必然联系。没错,大小固然重要,但更重要的是雄鱼如何使用它——这一切都是在雌鱼足够健康,能做出“明智”判断的前提下。

  要澄清一点的是,雄性剑尾鱼的生殖器官其实与人类的截然不同,它其实是肛门附近高度特化的臀鳍的一部分,呈细长的折叠状,末端具有钩子和奇特的小片。这样的器官被称为“生殖足”(gonopodium),尽管从演化的角度上,生殖足在本质上与哺乳动物的阴茎完全不同,但功能是一样的,都是将精子送入雌性的体内,使卵子受精。因此,生殖足可以说就是鱼类的阴茎。不同剑尾鱼属物种的生殖足长度有很大差异,同一物种的雄性个体之间也各不相同。这为科学家研究剑尾鱼属雌鱼对雄鱼的选择是否会影响生殖足大小的问题提供了机会。

  剑尾鱼属鱼类原产于中美洲的水道中,它们的名称来源于雄鱼尾鳍具有特别长的剑状延伸突——称为“尾剑”。在一些剑尾鱼物种中,所有雄鱼都是“求爱型”,会利用尾剑和炫耀性的动作说服雌鱼进行交配;而在另一些剑尾鱼物种中,一部分雄鱼是求爱型,其他雄鱼则是“偷袭型”,即体型较小的雄鱼会跳过繁琐的求偶步骤,转而采取所谓的“替代生殖策略”。由于求偶的方法是直接由父代传递给子代,因此会求爱的雄鱼总是产下会求爱的仔鱼,而专事偷袭的雄鱼后代也是偷袭型。

  对于剑尾鱼属雄鱼在生殖足长度和求偶方式之间的联系,墨西哥韦拉克鲁斯生态学研究所的科学家对剑尾鱼属雌鱼如何在混乱无序的生殖足,以及花里胡哨的求偶表演中判断并选择青睐的对象进行了研究。通过观察雌鱼对不同长度生殖足,以及对不同雄鱼交配行为的反应,科学家确定了影响雌鱼选择的重要因素,以及这些因素对应的环境条件。

雄性和雌性剑尾鱼雄性和雌性剑尾鱼

  在发表于《英国皇家学会会刊B辑》(Proceedings B of the Royal Society)的论文中,研究人员阐述了剑尾鱼属雌鱼在评估追求者的生殖足和华丽尾鳍时,可能演化出了一种小心翼翼的策略,兼顾了在危险栖息地中的生存和风险。

  研究团队从墨西哥野外采集了两种剑尾鱼,分别是剑尾鱼(学名:Xiphophorus hellerii)和多线剑尾鱼(学名:Xiphophorus multilineatus),前者的雄鱼均为求爱型,后者则具有求爱型和偷袭型。对于这两个物种(以及两种雄鱼求偶策略),研究人员都分别拍摄了雄鱼与雌鱼互动和求爱的视频。利用Photoshop软件,研究人员对这些短视频逐帧进行处理,把画面中的雌鱼完全去掉,然后把雄鱼的生殖足长度拉长或缩短30%,以代表生殖足的长度范围。如此这般,就有了6段视频:每个物种按生殖足长度分为三类。接下来,研究人员向雌鱼播放了这些视频片段,观察它们如何选择不同生殖足长度的雄鱼。研究人员主要根据雌鱼靠近视频中雄鱼的速度,以及它们在屏幕前停留的时间作为评判指标。

  换句话说,科学家在本研究中其实所做的,其实就是拍摄、编辑和放映“剑尾鱼色情片”,然后观察雌鱼看到片中雄鱼时是会兴奋还是厌烦。

  在只有求爱型雄鱼的剑尾鱼中,雌鱼更青睐的是具有较小生殖足的雄鱼。同样的情况也出现在多线剑尾鱼的两类雄鱼中。然而,当研究人员把雌鱼的相对健康情况考虑进去之后,雌鱼对求爱型和偷袭型雄鱼的偏好又出现了差别。

  实验之前,研究人员测量了所有雌鱼的体密度。体密度越高,表明鱼体含有的脂肪和蛋白质就越多,也就意味着具有更加健康的“身体状态”。尽管更为柔弱的雌鱼并不太关注求偶方式(而只在意生殖足长度),但肌肉更为发达、更加健康的雌鱼则有着非常特殊的品味。总而言之,它们青睐的是生殖足较短的求爱型雄鱼,而对于偷袭型雄鱼,它们更喜欢具有较长生殖足的个体。随着雌鱼身体条件的提高,这种偏好就更加明显。

一条雄性剑尾鱼属鱼类,与研究中所用的物种是近亲一条雄性剑尾鱼属鱼类,与研究中所用的物种是近亲

  大体重雌鱼中这种偏好分别的原因,很可能根植于所有地球生命的共同追求:确保自身和后代的存活。更健康的雌鱼通常年龄更大,经验更丰富,并且更具备躲避掠食者(通常是更大、更凶猛的鱼类)威胁的能力。这使它们能承受多一点风险,并利用更好的自身条件为下一代带来好处。正常情况下,与生殖足较长的雄鱼相处其实很危险。对于求爱型雄鱼来说尤其如此,它们本身在环境中就已经非常惹眼,吸引着掠食者的注意力,而长长的生殖足可能会增大在水中的阻力,使它们更难以逃脱险境。与它们在一起时,雌鱼被掠食者吃掉的风险也大大增加。因此,对求爱型雄鱼来说,更大的生殖足其实弊大于利。相比之下,对于其貌不扬的偷袭型雄鱼,更大的生殖足可能有着更多的好处。偷袭型雄鱼与雌鱼的交配过程短暂而混乱,并且常常伴随着追逐,因此较长的生殖足可能会大为提高受精的成功率。

  考虑到生殖足长度带来的后果,以及雄鱼“固执”地将求偶方式传递给后代的特征,我们可以推测,身体健康、甘冒风险的雌鱼为了后代的安全,会变得十分挑剔。通过在生殖足长度和求偶方式之间选择最佳的组合,而不是只考虑最安全的选项,这些雌鱼或许能确保在最好的条件下孕育后代。

  这项研究揭示了动物界中社会行为、竞争和生殖系统演化之间复杂而微妙的关系,再一次表明生物学现象往往有着许多间接的原因,并经常隐藏在我们意想不到的地方。

原文:https://gizmodo.com/for-fish-penises-bigger-isnt-always-better-1821014832

长着“铁盔甲”的蜗牛

深海世界生活着一些最神奇的生物,就连蜗牛在这里都变得与众不同。在印度洋深处的海底热液口附近,生活着一种长着“铁盔甲”的蜗牛——作为海洋中生活的腹足类动物,称它们为“海螺”其实更为恰当。这种螺的名字叫鳞角腹足蜗牛(学名:Chrysomallon squamiferum),它们的螺壳由铁的硫化物组成,腹足上覆盖着铁质鳞片,看起来金属感十足,堪称深海版的“钢铁侠”。没错,鳞角腹足蜗牛长出了一副铁盔甲,这在动物世界中是独一份。

  这种令人惊奇的天赋其实要归功于鳞角腹足蜗牛体内的共生细菌。地球上还没有其他动物能以这种方式利用铁元素。而且,由于这种蜗牛的铁化合物具有磁性,有人甚至开玩笑地把它们称为“海底的万磁王”。此外,从比例上看,鳞角腹足蜗牛的心脏体积比许多其他动物都大得多,大约占身体总体积的4%(相比之下,人类的心脏体积只占身体的1.3%)。

鳞角腹足蜗牛(学名:Chrysomallon squamiferum),它们的螺壳由铁的硫化物组成,腹足上覆盖着铁质鳞片  鳞角腹足蜗牛(学名:Chrysomallon squamiferum),它们的螺壳由铁的硫化物组成,腹足上覆盖着铁质鳞片

  奇特的铁甲

  非同寻常的海底热液口环境造就了这种非同寻常的生物。在2400米到2800米的海底,热液口附近的海水流入地壳缝隙,被滚烫的岩浆加热,温度能达到400摄氏度以上,许多有毒物质也随之倾泻而出。2001年,科学家在印度洋的Kairei热液口区首次发现了鳞角腹足蜗牛。即使是在热液口生物群落中,它们也是非常令人惊奇的发现,从来没有一种腹足类动物像它们一样长出数以百计的鳞片!

  可以说,鳞角腹足蜗牛的身体皆被铁化合物覆盖,主要是二硫化亚铁(黄铁矿的主要成分)和四硫化三铁(Fe3S4),后者具有磁性,因此鳞角腹足蜗牛会被磁铁吸住。鳞角腹足蜗牛的螺壳并不像板甲那么坚硬,而更像是锁子甲——柔软却又强韧。它们的螺壳可以分为三层:最外面是一层“镀铁”的物质,厚度约30微米,由铁的硫化物组成;最内侧由钙化的碳酸盐矿物霰石组成,厚度约250微米;而中间是柔软的有机层——相当于其他腹足类的外壳膜,厚度约150微米。铁质可以提供力量,而有机层能吸收掠食者——比如一只挥舞螯肢的螃蟹——攻击时的力道。此外,有机层还具有散热的功能。目前,有研究者正在尝试借鉴鳞角腹足蜗牛的螺壳结构,研究在民用和军事领域的应用。

  鳞角腹足蜗牛的螺壳具有3个螺旋,整体呈压缩的球形。螺壳上具有肋纹和精细的生长线。相比Peltospiridae科的其他物种,鳞角腹足蜗牛的体型要大得多。大部分Peltospiridae科蜗牛的壳长在15毫米以下,而鳞角腹足蜗牛的螺壳宽度通常在9.8~40.02毫米之间,最大的可达45.5毫米,成体的平均宽度为32毫米。

  相比外部的螺壳,鳞角腹足蜗牛腹足上的鳞片似乎有着更合理的用途。一些掠食性海螺(比如芋螺)能伸出鱼叉状的齿舌捕食小鱼,然后注入毒液使其麻痹。生物学家推测,鳞角腹足蜗牛的铁质鳞片可能具有抵挡这种攻击的作用,就像骑士的盔甲可以使标枪转向。

  鳞角腹足蜗牛的鳞片主要由蛋白质组成(贝壳硬蛋白是一个复杂的蛋白质),以覆瓦状排列;相比之下,多板类(包括各种石鳖)的鳞片主要是钙质。不过,在鳞片之间的连接处,我们找不到明显的贝壳硬蛋白生长线。无论是现生,还是已灭绝的腹足类物种,再没有第二种具有这样生长在皮肤上的鳞片;已知的现生动物中,也再没有其他物种能像它们这样利用铁的硫化物,无论是骨骼还是外骨骼。

  鳞角腹足蜗牛的鳞片外表面具有相当多样的附着生物,主要为两类细菌:ε-变形菌和δ-变形菌。这些细菌可能为蜗牛提供了矿物质。有学者认为,鳞角腹足蜗牛会分泌一些有机化合物,促进这些细菌的附着和生长。科学家推测,腹足上的鳞片可能具有保护或解毒的功能,比如保护鳞角腹足蜗牛免受热液口液体的伤害,使它们体内的细菌可以安全地进行化学合成作用;又或者,这些鳞片本身可能就是共生细菌代谢时产生的有毒硫化物沉积的结果。不过,鳞片的真正功能是什么,我们还需要更多的研究。

鳞角腹足蜗牛的“铁盔甲”看起来金属感十足,堪称深海版的“钢铁侠”。鳞角腹足蜗牛的“铁盔甲”看起来金属感十足,堪称深海版的“钢铁侠”。

  体内的细菌工厂

  1977年,科学家在加拉帕戈斯裂谷首次发现了海底热液口。加拉帕戈斯群岛的奇特生物为查尔斯?达尔文的自然选择理论提供了灵感,而群岛海底的热液口又展示了新的生命可能。这些热液口的能量来自地质活动,喷出的液体通常具有很高的酸性,并含有多种金属和硫化氢。硫化氢就是臭鸡蛋气味令人恶心的原因,对生物体具有毒性。不过,也有一些细菌可以通过化学合成的过程利用硫化氢获取能量。在漫长的演化过程中,许多神奇的动物已经和这些细菌形成了互利共生的关系,从而适应了热液口的严酷环境。在总体上寒冷、食物匮乏、生物量极低的深海环境中,深海热液口就像“生命绿洲”,周围聚集了大量无脊椎动物。

  鳞角腹足蜗牛相当于一个化能合成共生作用的功能体,它们体内的内共生细菌主要分布食管腺体(esophageal gland)中,而这个器官的体积甚至比其他蜗牛体内的腺体大1000倍。这些共生菌为鳞角腹足蜗牛提供了能量,很可能是某种糖类(这种细菌也还没有在实验室里培养出来,因此我们只能猜测)。食管腺体就像蜗牛体内的食品工厂,使它们甚至不用去觅食——鳞角腹足蜗牛的消化系统已经退化,不到典型腹足类消化系统体积的10%。这或许就是鳞角腹足蜗牛能长到4.5厘米大小的原因,而那些关系很近,却没有共生菌的蜗牛只能长到1.5厘米甚至更小。与此同时,鳞角腹足蜗牛为这些细菌提供了一个安全、舒适的生存环境。

  奇怪的是,在类似的生活环境中,却出现了3种颜色各不相同的鳞角腹足蜗牛。2001年,生物学家在三个地点发现了鳞角腹足蜗牛,其中两个地点的个体呈深色,第三个地点的个体呈白色。根据遗传学分析的结果,这些蜗牛都属于同一个物种。

  出现这种情况的原因是什么?答案在于与鳞角腹足蜗牛共生的细菌——黑色变种的蜗牛体内具有一些白色变种所没有的细菌。鳞角腹足蜗牛的体表和体内生活着一些有益的细菌,能帮助它们生成铁的硫化物。来自海底热液口硫化物具有很高的毒性,但如果与矿物质结合并形成固体形式,毒性就会消失。在这些化合物毒性减弱的过程中,细菌可能扮演着重要的角色。因此,鳞角腹足蜗牛不仅镀了一层铁盔甲,而且这层铁盔甲还是有毒的。不过,这只是科学家的推测,他们还没有在实验室里培养出这种细菌。也有研究者认为,鳞角腹足蜗牛完全是靠自己生成了铁的硫化物,如果确实如此,那将是前所未有的发现。

  有研究者提出,在食管腺体中蓄养内共生细菌的策略,可能促使鳞角腹足蜗牛在解剖学结构上发生一系列新的改变,从而更加有利于细菌的生长,蜗牛本身的需求反而还在其次。食管腺体的增大、保护性的腹足鳞片、体积较大的呼吸系统和循环系统,以及较高的繁殖能力,都是有利于内共生微生物的适应特征。在极端的化能合成环境中,这些适应特征满足了鳞角腹足蜗牛的能量需求。

现已知三种形态的鳞角腹足蜗牛,从左到右分别来自Kairei、Longqi和Solitaire区域现已知三种形态的鳞角腹足蜗牛,从左到右分别来自Kairei、Longqi和Solitaire区域

  隐秘的海底生活

  2001年,科学家在中印度洋脊的Kairei热液口区首次发现了鳞角腹足蜗牛,随后又在Solitaire区(位于中印度洋脊)和Longqi区(位于西南印度洋脊)发现了它们。其中,Longqi热液口区被指定为模式标本产地,所有的模式标本材料都来自于该区域。虽然三个地点之间的距离很大,但鳞角腹足蜗牛的总分布面积其实很小,不到0.02平方公里。

  尽管早在十多年前科学家就发现了鳞角腹足蜗牛,但直到2015年,研究者才正式发表了对该物种的生物学描述,并确定其学名为Chrysomallon squamiferum。其中属名“Chrysomallon”来源于古希腊语,意思是“金色毛发”,因为它们螺壳中的二硫化亚铁呈现金色;种名“squamiferum”来源于拉丁语,意思是“长有鳞片的”。

  鳞角腹足蜗牛的头部长有两根光滑的、逐渐变细的触角。它们没有眼睛,也没有特化的交接器。它们的腹足呈红色,体积较大,无法完全缩回螺壳。此外,它们也不像其他蜗牛和蛞蝓一样具有上足腺(Suprapedal gland),也没有上足触手。

由鳞角腹足蜗牛和多毛类环节动物、甲壳动物等类群组成的Longqi热液口区生物群落由鳞角腹足蜗牛和多毛类环节动物、甲壳动物等类群组成的Longqi热液口区生物群落

  在 Pelospiridae科中,鳞角腹足蜗牛是目前已知唯一的“同时雌雄同体”物种,这意味着它们同时具有雄性和雌性生殖器官(有些蜗牛属于“阶段性雌雄同体”)。它们具有很高的繁殖力,所产的卵很可能是依靠卵黄提供营养。科学家还不清楚鳞角腹足蜗牛幼体和胎壳的形态(目前采集到最小的未成熟个体已经具有2.2毫米的壳长),但推测可能存在一个浮游扩散的阶段。鳞角腹足蜗牛在人工环境下很难成活,即便如此,它们还是曾在大气压下的水族缸中存活了超过3个星期。

  在食物匮乏的深海热液口环境中,鳞角腹足蜗牛演化出了一种出色的生活策略。海洋上层的有机物质只有极少一部分能落到海底,为了生存,包括鳞角腹足蜗牛在内的许多生物演化出了利用化学能源的能力,在深海热液口附近形成了生命奇观。西南印度洋脊的深海热液口正缓慢扩展,而热液口周围的生物群落对环境扰动十分敏感,并且恢复速率很慢。深海采矿或许会对鳞角腹足蜗牛等热液口生物带来潜在的威胁。

  你或许会问,为什么鳞角腹足蜗牛不迁移到更加宜居的环境?事实上,如果能适应这样的环境,生活其实还不错。举例来说,热带珊瑚礁区域堪称“海洋中的热带雨林”,生活着难以计数的物种,但同时也意味着激烈的生存竞争。而在深海环境,特别是热液口附近,还有一些生态位等待着新生物的到来。

如果我们能消灭地球上所有的蚊子,结局会怎样?

消灭地球上的蚊子会带来什么结果?这个看似简单的问题其实并不简单消灭地球上的蚊子会带来什么结果?这个看似简单的问题其实并不简单
 

  如果我们能消灭地球上的蚊子,那将带来什么样的结果?这个问题最初出现在Quora网站上,台湾大学的昆虫学系助理教授Matan Shelomi(中文名为薛马坦)在该问题下做了详细的解答。以下便是他的答案。

  这是我在Quora上最常被问到的问题类型,提问的形式多种多样,比如“蚊子存在的意义是什么?”、“蚊子在生态系统中扮演着什么角色?”、“我们能否消灭所有的蚊子?”、“我们如何完全摆脱蚊子?”、“有没有人尝试消灭所有蚊子?”,以及“为什么我们还没有完全消灭蚊子?”等等。除了蚊子,我们还会看到关于其他动物的类似问题,包括苍蝇、蟑螂,或者还有臭虫、跳蚤,以及不是昆虫的蜱虫。把这些问题合起来,或者一一回答这些问题,需要耗费无数的时间。因此,我决定写一篇文章,把所有这些问题的答案呈现出来。我们将把焦点放在蚊子上,因为这种动物的情况也能适用在其他所谓的害虫身上。

  听到人们如此迫切地希望一个物种灭绝,而不是阻止它们灭绝,是不是有种很奇怪的感觉?这种仇恨可不仅仅是因为蚊子很招人烦。事实上,蚊子堪称世界上对人类最为致命的动物,而且我是把人类本身也算了进去。它们传播,或携带诸如疟疾、黄热病、登革热、基孔肯雅热、西尼罗河病毒和寨卡病毒等疾病和病原体。每一年,所有这些疾病造成的死亡人数超过战争和杀人案件的总和。消除这些疾病将拯救数以百万计的生命,同时也能减少许多苦痛和残疾。如果没有蚊子,这些疾病将不会存在……但是,为什么会这样呢?

  我们需要杀死所有蚊子吗?

  不,因为并不是所有蚊子都是有害的。蚊子属于昆虫纲双翅目之下的蚊科(Culicidae),包括了超过3500个物种!雌性通常会在平静水体中产卵,从浅水池塘到花盆积水,从供鸟嬉戏的水盆到地上的积水,都是它们孕育后代的地方。蚊子幼虫在水中生长,以微生物、小颗粒或藻类为食。它们会在水中化蛹,成虫最终会离开水面飞走。

  蚊子成虫吃什么?大部分物种是素食主义者。它们吸食花蜜、植物汁液和果汁,并且从不吸血。消灭这些物种并没有必要;事实上,这还会带来负面效果。在无害的巨蚊属(Toxorhynchites)中,有超过90个物种。顾名思义,这类蚊子具有巨大的体型,而它们也是我们的“同盟军”:它们的幼虫以其他蚊子的幼虫为食!由于它们对人类有所益处,因此在我们尝试任何消灭“坏”蚊子的方法时,应当确保这些大蚊子安然无恙。

  在以吸食血液为生的蚊子种类中,只有少数(200种左右)吸食人血,其他的则以鸟类、蜥蜴或小型哺乳动物的血液为食。在能以人血为食的蚊子中,也不是所有种类都携带病原体,甚至在那些携带疾病的物种中,也不是所有种群都是有效的病原体载体。而且,不同的物种携带着特定的疾病。例如,引起疟疾的疟原虫就几乎只由疟蚊属(Anopheles)的种类传播。在大约460种疟蚊属蚊子中,只有大约100种能携带5种左右可感染人类的疟原虫(超过200种疟原虫是感染其他动物的)。在这100种蚊子中,只有30到40种能成为疟原虫属生物的寄主,给人类带来致病风险;其中,又只有屈指可数的几种疟蚊偏好人类血液作为食物来源,并只有5种能携带恶性疟原虫(学名:Plasmodium falciparum)——引发的疟疾最为危险,症状最严重,死亡率也最高。在这5种疟蚊中,最危险的是冈比亚疟蚊(学名:Anopheles gambiae),虽然这个物种本质上其实是由至少7个物种组成,但那又是另一个故事了……总而言之,如果你真的想要消灭疟疾,那只有很少几个物种关系最大,而首先必须把重点放在冈比亚疟蚊上。单单消灭这个物种(集合)就将拯救数百万人的生命。

  其他少数几个属的蚊子也会携带病原体,即所谓的“虫媒病毒”(arboviruses,即所有必须通过吸血性节肢动物媒介而感染脊椎动物的病毒)。伊蚊属(Aedes)的许多物种,尤其是埃及伊蚊(学名:Aedes aegypti)和白纹伊蚊(学名:Aedes albopictus),都是登革热病毒、黄热病病毒、基孔肯雅热病毒、西尼罗河病毒、拉克罗斯病毒(一种脑炎病毒),以及一些动物病毒如西部马脑炎病毒的传播载体。这些病毒中有许多还可以通过库蚊属(Culex)和绒蚊属(Culiseta)传播,前者还能传播鸟疟疾,后者则极少叮咬人类;同样能传播其中某些病毒的还有黄蚊属(Ochlerotatus)——不过这个属名还存在争议,我就不展开了。趋血蚊属(Haemagogus)能传播黄热病病毒和一些较为罕见的病毒,如马亚罗病毒(Mayaro virus)和伊利乌斯病毒(Ilheus virus)。沼蚊属(Mansonia)能传播一些虫媒病毒,但更主要是传播在亚洲和太平洋地区导致丝虫病的丝虫。其他的属也有一些携带丝虫的物种,能传播寄生狗和其他动物的犬心丝虫,以及引起人类象皮病(又称淋巴丝虫病)的几种丝虫。

  为什么某些物种相比其他物种是更好的疾病载体?答案是,蚊子并不仅仅是携带疾病:它们也被感染了。当蚊子将被感染的血液吸入体内时,它们的中肠也会受到感染。病原体会在中肠内增殖,然后喷涌到体腔,最终在那里感染唾液腺。整个过程可长达两周时间,取决于疾病的种类。当蚊子叮咬下一个受害者时,病原体就会随着唾液注入受害者体内。这也是艾滋病病毒无法经过蚊子传播的原因之一:病毒无法感染蚊子的中肠,而是直接被消化了。不同的蚊子种类可能会对某些特定的病原体免疫,中肠或唾液腺具有抵抗力,或者只是在病原体完成增殖周期并到达唾液腺之前就因为某些自然原因死掉。受感染的蚊子有时确实会寿命较短,因此演化机制会让这些病原体变得小心翼翼:它们不能在自己完成繁殖并注入新的宿主之前杀死蚊子。

  总结一下,我们不需要杀死所有的蚊子,只需要处理那些传播疾病的物种。

  蚊子为这个世界做了什么?

  除了传播疾病,蚊子的存在还有什么其他意义?更重要的是,那些传播疾病的物种是否扮演着某种角色,使它们值得存在于我们周围?

  让我们从幼虫开始。蚊子幼虫,也就是孑孓,生活在水中,以各种碎屑为食,它们确实在某种程度上能保持水体清洁,但其他许多不传播疾病的生物也能做到这点。孑孓几乎不会摄食任何重要的东西……除了巨蚊属的幼虫会以其他蚊子的幼虫为食,前面已经提到,我们应当避免让这个属的蚊子遭到“种族屠杀”。

  孑孓会被哪些生物吃掉?其他水生幼虫,比如蜻蜓和豆娘的幼虫、一些龟类、较大的蝌蚪,以及鱼类。最著名的孑孓捕食者是食蚊鱼(学名:Gambusia affinis)和霍氏食蚊鱼(学名:Gambusia holbrooki)。这两种鱼原产于北美洲,已经被普遍引进到世界各国,用于控制池塘和水潭的蚊虫。一些地方的政府还免费发放这两种鱼,认为它们能吃掉蚊子幼虫,而不是其他生物。这种方法在世界一些地方效果明显,特别是在俄罗斯城市索契附近,那里原本是疟疾热点;2010年,当地人还竖起了一座食蚊鱼的雕像。

  然而,认为这两种鱼只吃蚊子幼虫的观点并不准确,它们的名字也是一个误会。霍氏食蚊鱼其实更喜欢吃浮游生物、藻类和有机碎屑(与孑孓的食物相同),通常在没有其他选择时它们才会捕食孑孓等无脊椎动物。食蚊鱼是更厉害的掠食者,每天能够吃下相当于自身体重一半到一倍半的蚊子幼虫。不过,它们无法只依靠蚊子存活,还必须摄食浮游生物和其他昆虫等食物,否则就会营养不良并发育迟缓。虽然被称为“食蚊鱼”,但蚊子在这两种鱼的日常食谱中只占据很小的一部分。更糟糕的是,它们对其他鱼类极其凶猛,而那些鱼类本身在捕食蚊子上也同样高效。在澳大利亚,从20世纪20到30年代人为引进的食蚊鱼在水中横行霸道,欺压并消灭了当地鱼类和蛙类,使后者的数量降低到很低的程度,以至于蚊子的数量反而上升——因为掠食者的总数变少了。被外来食蚊鱼吃掉或杀死的本土蛙类和鱼类,很多本身就是重要的物种,如今却面临灭绝的威胁,这表明即使食蚊鱼真的能捕食蚊子,它们的引入也很可能成为严重的问题。索契之所以没有遭受这样的灾难,是因为那里一开始就没有多少会受到食蚊鱼威胁的本土动物类群。引入其他鱼类,比如鲶鱼甚至金鱼,都是有可能取得和食蚊鱼同样效果的。很显然,食蚊鱼属(Gambusia)并不是全球蚊子消灭行动的可靠帮手,但另一方面,我们也不用担心孑孓灭绝会导致鱼类消失的问题,因为没有一种鱼类(或其他动物)是单一地以它们为食。

  那么对于蚊子成虫呢?以它们为食物的生物种类就更加多样了,从鱼类到蛙类,从蝾螈到蜥蜴,从捕蝇草到鸟类和蝙蝠,更不用说其他昆虫了……这里顺便说一下,大蚊(大蚊总科的昆虫)有时被称为“蚊鹰”(mosquito-hawk),但它们其实不吃蚊子,事实上它们甚至不吃任何东西:大蚊成虫寿命很短,不进食,交配繁殖后就完成了一生的使命。真正吃蚊子成虫的昆虫包括蜻蜓和豆娘,它们的水生幼虫同样会捕食孑孓和孑孓发育成的蛹。它们是蚊子一生的天敌。

  这些自然捕食者能否用来消灭蚊子?而蚊子的清除是否会损害这些捕食者?不能,不会。再说一次,蚊子并不是所有这些生物的唯一食物来源。以一种体型较大的动物来举例,紫崖燕(学名:Progne subis)是一种外形十分漂亮的美洲鸟类,常常被认为是一种应对蚊子的生物防治物种。但是,它们的作用可能被高估了。许多研究者对这种鸟类的摄食行为进行了观察,发现蚊子在它们的食谱中所占比例并不大,而它们的摄食区域和时间也不与媒介蚊活跃的地点和时间重叠;而且,释放紫崖燕也并不会对当地的蚊子种群造成很大的影响(尽管也有些研究提出相反的意见)。此外,与食蚊鱼一样,紫崖燕也会带来适得其反的效果,因为它们会捕食其他掠食性昆虫,比如蜻蜓,以及从甲虫到蜜蜂等众多有害或有益的昆虫。除了蚊子、摇蚊、蠓、和苍蝇之外,蜻蜓本身也喜欢捕食蜜蜂和蝴蝶。蝙蝠也是如此,蚊子在它们的食物中只占不到1%。你能指责这些捕食者吗?蚊子体型微小,还不够塞牙缝的,而一只圆滚滚的甲虫或蛾子显然要更有营养得多。

  如果这些替代食物来源不存在呢?世界上有没有哪些地方蚊子是占优势地位的昆虫?有,在北极。虽然大部分昆虫喜欢温暖的气候,热带地区也确实拥有最高的昆虫多样性,但实际上,北极苔原才是世界上蚊子问题最严重的地方,因为那里为蚊子繁育提供了完美的“孵卵器”。北极苔原的土壤在冬天近乎冻结,而夏天土壤解冻,使整片地区成为巨大的蚊子繁殖场。蚊子在这些地方组成庞大的群体,形成一团团浓密的黑云。科学家认为,蚊子是这些地区鸟类最重要的食物来源……不过也有人表示反对,认为摇蚊(摇蚊科Chironomidae的种类)实际上在当地鸟类的食谱中占更大比例,并且会填补蚊子消失后留下的空白。因此,如果蚊子被消灭,那北极的鸟类将最可能成为(或许也是唯一)被波及的生物。幸运的是,北极地区占优势地位的蚊子是撮毛伊蚊(学名:Aedes impiger)和黑足伊蚊(Aedes nigripes),二者都不是人类疾病的传播者。因此,如果我们的目标是对抗传播疾病的物种,那北极就可以不用考虑了。

  那授粉的问题呢?有没有什么植物是依赖蚊子授粉的?有,很多,但其中大部分植物(比如一枝黄花属)也可以由其他昆虫授粉。少数植物的确更青睐蚊子授粉,即虽然其他昆虫能帮它们授粉,但蚊子是最为常见,也是最有效率的。这些植物都属于兰科,也是低温生活的种类。其中一个例子是北方小泽兰(学名:Platanthera obtusata),一种生长于北极地区的舌唇兰,主要依靠雌性伊蚊和少数几种蛾类进行授粉。这种兰花通过散发一种微弱的气味——能被蚊子探测到但我们的鼻子闻不到——来吸引蚊子,这种气味非常类似人类的体味。与北方小泽兰相近的一种兰花,Platanthera flava,也是主要依靠伊蚊传粉,小型蛾类次之。其他舌唇兰属(Platanthera)物种主要由其他昆虫授粉,蚊子其次;或者主要为自体授粉,很少需要昆虫帮忙;其他少数几种兰花也有类似的现象。因此,这些兰花中有一部分可能会因为蚊子被消灭而受到威胁。不过,这些兰花中没有哪一种是对生态系统本身有重要影响的,它们对人类来说也不是很重要;没有它们世界并不会有太多改变。这并不是说兰花物种灭绝的问题无关紧要,而是说解决昆虫传播疾病的问题相对而言更为迫切。

  彻底消灭蚊子会带来什么风险?

  正如你所看到的,蚊子中并不存在所谓的“关键物种”(keystone species,又称为基石物种)。没有哪个生态系统会因为任何蚊子的消失而崩溃。唯一的例外可能是北极苔原,但那里的蚊子种类并不是疾病传播者,因此可以被保留下来。

  当然,这些都是我们的假设。毫无疑问,我们并不知道所有蚊子种类与其所处环境中其他所有生命形式之间如何相互作用,我们也有可能忽略了一些东西。非确定目标的灭绝并不是唯一的问题。存在另一种可能性是,蚊子被消灭之后留下的空白(学术上称为“生态位”)将被其他更让人烦恼——尽管可能不会传播疾病——的生物所填充。最糟糕的情况是,一种携带病原体的蚊子取代了另一种,而最可能会发生的是,蚊子会被长角亚目蚊科以外的其他类群——包括蠓科、蚋科、蛾蚋科、网蚊科、瘿蚋科、幽蚊科、摇蚊科、Deuterophlebia科、细蚊科、粪蚊科和山蚋科等科的物种——取代。这些昆虫也具有水生的幼虫,有些物种的雌性个体也会吸食血液,其中有些还会吸食人血。少了蚊科的竞争者,以及可能变得更少的捕食者,这些类群的物种可能会迎来种群数量的爆发。另一方面,原先捕食蚊子的捕食者可能会更多地捕食这些类群,在一段时间之后使其数量达到平衡状态。这些与蚊子关系很近的类群会带来危险吗?摇蚊科的种类不会叮人,但蠓科的会;而且,它们的叮咬不仅让人持续瘙痒长达一星期之久,有些物种还会传播感染人类和动物的疾病(尽管目前还没有发现人疟疾或黄热病的记录)。

  蚊子还会以另一种出人意料的方式影响生态系统,这里又要再一次提到北极。蚊子控制着北美驯鹿(学名:Rangifer tarandus caribou)的迁徙。生活在加拿大的庞大驯鹿种群一直处于不断寻找食物的旅程中,但是它们在夏天的行程会多很多,跨越更长的距离前往海拔更高的地方,有时候还会避开最佳的觅食地点。这一切,都是因为它们要躲避夏季在北极地区肆虐的庞大蚊群。长时间行进而不进食,意味着北美驯鹿为寒冷冬天积蓄的脂肪更少,而这经常代表着死亡。消灭这些地区的蚊子将改变北美驯鹿很长历史时间里的迁徙路线,由此引发的后果无法预料。另一方面,今天北美驯鹿的种群数量只是曾经数量的一小部分——从数十万头减少到数千头,而人类对其栖息地的破坏是引起数量下降的主要原因。所以多一些北美驯鹿是件好事情。蚊子对北美驯鹿的伤害显而易见。在蚊子爆发最严重的时期,北美驯鹿一星期会损失多达1升的血液。因此,如果你问我的话,我会说它们肯定非常赞成把蚊子消灭掉。考虑到它们的种群数量和群体智慧,如果投票的话,票数一定很多。

  考虑到我们已经在世界很多地区根除了疟蚊,同时没有造成麻烦,因此真正极端糟糕的情况出现的可能性很小。不过,事情也没有绝对,任何灭绝或局部地区灭绝(extirpation,指一个物种在一块选定地理区域中已经消失或灭绝,但在其他地区依然存在)都可能带来难以预料的风险。问题在于:这些可能会改变某个生态系统的风险能与人类生命的价值相比吗?在多大程度上?我们并不是在争论应不应该拯救熊猫,而是要不要根除人类有史以来已知最主要的杀人凶手。考虑到虫媒病毒和疟疾目前仍在杀死或感染数以百万计的人,如果选择不消灭那些相关的媒介蚊,唯一的辩护理由就是:这么做的预期环境效应将带来同样的损害。我们不能为了对抗黄热病而在一整片热带雨林中施放毒药,因为数百万人依赖热带雨林获取食物、药物、木材、工作机会、清洁的饮用水和清洁的空气;药方比疾病更加恶劣,并影响更多的人。另一方面,假如我们消灭了埃及伊蚊,而一种蝾螈和一种兰花也会随之消失:这样的交易我们是可以接受的。这里的“我们”是指数百万因此不再因为黄热病而死亡的人。毫无疑问,其他物种的灭绝的确是悲剧,但对抗黄热病的胜利价值可以媲美诺贝尔和平奖。渡渡鸟和袋狼的灭绝没有给人类社会带来益处,因此完全是一场不幸,相比之下,埃及伊蚊或甘比亚疟蚊的消失,其价值将比最悲观估计的成本还要高。

  我们如何能消灭全世界所有的疾病媒介蚊?

  由于对生态系统进行改造的过程相当微妙,因此重要的是不要使用一些太过宽泛的方法。预测消灭一个物种的影响已经够难了:想象一下把这一过程中所有被意外杀死的物种都考虑在内……假如我们能全部预想到的话!所以杀虫剂可以排除:它们没有明确的目标,而且也不能在全球范围内奏效。空中喷洒药剂不会伤害到那些在室内叮咬人类的蚊子,在蚊子的繁殖区域喷洒杀虫剂也不会渗透到人类住地中无数的小空间,从空心的树洞,到塑料袋里的小块积水,都可能是蚊子繁衍的场所。这也是公众参与在蚊虫防治中显得特别重要的原因:每个人都必须尽到自己的责任,把自家后院里的蚊子孳生场所清理干净。否则,即使有一家没处理好,蚊子就会卷土重来。

  不,如果我们想要根除全世界的蚊子,就需要一种针对特定物种、使目标无法抵挡并无处可逃的方法。通过方案设计,必须确保只有目标生物受到影响,而且要让它们无法适应或演化出抵抗能力。我们需要某种使它们“自我毁灭”的方法,即目标物种在无意间导致了自己的死亡。这样的事情有可能吗?

  有可能,而且已经在做了。新世界螺旋蝇(学名:Cochliomyia hominivorax)是一种寄生蝇,其蛆虫会寄生在哺乳动物的健康组织上。人类也是这种寄生蝇的寄主,但受害更严重的是牛,被寄生的牛会在10天内死亡。20世纪50年代,美国一年因新世界螺旋蝇造成的经济损失超过2亿美元。事情已经到了刻不容缓的地步,但杀虫剂并不奏效。科学家对新世界螺旋蝇进行了大量研究,包括一项耗资25万美元、部分关于新世界螺旋蝇性行为的研究。这项研究遭到许多美国参议员的责难,认为纯粹是浪费纳税人的钱。不过,这些参议员很快就乖乖地收回前言,认错道歉。科学家发现,雌性新世界螺旋蝇其实是单配的,即一生中只交配一次。研究者爱德华·尼普林(Edward Knipling)和雷蒙德·布什兰德(Raymond Bushland)推测,如果一只雌性新世界螺旋蝇与一只不育的雄性交配,那它的卵就将永远不会孵化;而由于雄性可以反复交配,因此一只不育雄性能使很多只雌性无法产生后代。因此,如果将足够多数量的不育雄性新世界螺旋蝇(不会对牛等牲畜带来影响,因为雄蝇不会吸血或产卵)“倾泻”到生态系统中,就能立刻缩小下一代的种群规模。这一过程可以反复进行多次,直到最终每只雌蝇都与不育雄蝇交配,到了那个时候,整个种群就会永远消灭了。

  在20世纪50年代的实验室中,科学家使用X射线(后来是伽马射线和其他技术)对新世界螺旋蝇进行了昆虫节育技术(sterile insect technique,SIT)的试验。他们用碎肉大规模培养雄蝇,然后用射线照射,强度足以使它们不育,同时又不会太虚弱,以至于无法与正常雄蝇竞争。长话短说,这种方法奏效了。通过每隔几星期一次地大量释放这种不育雄蝇,科学家成功地消灭了美国的新世界螺旋蝇,接着是墨西哥,然后继续向南,最终北美洲和中美洲都再也见不到这种寄生蝇的踪迹。1988年,新世界螺旋蝇被意外地带入了利比亚,而就在1990年12月,该国就引入了不育雄蝇,并在不到一年的时间里就根除了这种寄生蝇。如今在巴拿马,不育雄蝇还会被定期投放,以建立一堵生物墙,阻挡从南方飞来的任何雌蝇。这些措施仅为美国畜牧业就节省了超过200亿美元,这个数字还在不断增加。研究的作者因此获得了1992年的世界粮食奖(World Food Prize),该成果也被誉为“(20)世纪最伟大的昆虫学成就”。

  对于安全消灭疾病媒介蚊,昆虫节育技术的原理是很可取的,因为其不会对环境造成其他影响,除了会目标物种本身的消失;而且,这种方法一次只会作用在一个物种上,对埃及伊蚊的昆虫节育技术不会对撮毛伊蚊有任何影响,更不用说其他属的蚊子,以及其他昆虫、哺乳动物或人类。许多蚊子种类的雌性也是单配的,因此理论上也可以应用昆虫节育技术。此外,由于只有植食性的雄性被释放,因此就算在一个地方释放数十亿只这样的蚊子,也不会使人群被多叮咬一口。非洲的部分地区已经成功应用昆虫节育技术治理了舌蝇(Glossina spp。,能传播非洲人类锥虫病,即昏睡病或嗜睡病),但在其他地方,这样的尝试多以失败告终。在美国佛罗里达州治理四斑按蚊(学名:Anopheles quadrimaculatus)的过程中,尽管花了接近一年的时间,但依然没有任何效果,因为投放的不育雄性竞争不过正常的个体,没有交配的机会。在加利福尼亚州治理跗斑库蚊(Culex tarsalis)的过程中,也发生了同样的情况。这种技术存在的问题是,辐射会使蚊子变得虚弱,而且(或者)缩短它们的寿命,因此无法吸引雌性。并不是所有的昆虫都会对射线照射反应良好,这也限制了昆虫节育技术的使用。

  还有一种策略是“胞质不亲和性”(cytoplasmic incompatability),听起来比它本身还复杂。该方法不用辐射,而是用一种名为“沃尔巴克氏体”(Wolbachia)的细菌感染蚊子。这种细菌能感染节肢动物,包括很大部分昆虫,以及一些线虫。它们能生活在昆虫细胞内部,包括卵细胞和精细胞。当被沃尔巴克氏体感染的精子与未受感染的卵子结合时,合子将无法存活。效果保证。1967年,缅甸的奥波市就是利用这种方法,在9个星期内成功消灭了致倦库蚊(学名:Culex quinquefasciatus)。然而,当野生蚊子同样被沃尔巴克氏体感染时,这种方法就会失效:如果卵子和精子都被同一菌株感染,或者卵子被感染而精子未被感染,那它们结合而成的合子就会存活,并长成新的雄性和雌性,后者的卵子同样对沃尔巴克氏体免疫。另一方面,在实验室中高密度培育被感染的蚊子还存在很大的问题:对冈比亚疟蚊的研究显示,那些以高密度培育出来的个体很难竞争过低密度培育或自然密度下成长的个体。投放所用的蚊子需要大量且廉价地培育出来,但如果把成本压得太低,它们就可能无法与野生雄性展开竞争,并将最终失败。

  还存在另一个问题:由于我们不希望释放吸血的雌蚊,因此节育技术也好,其他方法也好,我们都需要在实验室培育的蚊子被释放之前,以某种方式将其中的雌蚊清除掉。不幸的是,蚊子中的性别比例为50/50,因此有必要想出一种分隔雄性和雌性的方法。科学家一开始所用的方法简直不能再原始了:雄蚊和雌蚊的蛹在颜色和大小上有细微的区别,因此可以用人工或带有过滤器的机器将它们分拣出来,确保只有雄蚊被送去用射线照射,然后释放。令人郁闷的是,这种筛选方式对疟蚊属无效,因为二者的蛹大小相同。甚至在这一步之前,许多金钱也是白白花掉的,因为实验室里的雄蚊和雌蚊都消耗同样多的资源。可以这么说,在昆虫节育项目中,只有不到一半的昆虫会最终被释放,实际的投入是理论上投入的两倍。如果想在全球范围内采用昆虫节育技术消灭媒介蚊,我们需要释放数量极为庞大的不育雄蚊,高昂的成本将是必须考虑的问题。

  有没有什么方法可以确保只培育雄蚊,或者提前把不必要的雌蚊先杀死呢?有,使用“遗传性别品系”(genetic sexing strains,GSS)。这是一种用了很久的技术,原理是将一个显性的选择标记——使持有者能够在致命条件下存活下来的某个基因——连接到雄性的性染色体上。一个成功的例子是名副其实的“MACHO”(西班牙语中健壮男子的意思):一个在雄性染色体上具有抗杀虫剂基因的白魔按蚊(学名:Anopheles albimanus)品系。蚊子通常具有和人类一样的XY型性染色体,只有雄性具有一条Y染色体。当用杀虫剂处理一堆MACHO的卵时,可以杀死99.9%的雌性。20世纪70年代晚期,在萨尔瓦多,这一方法确保了每天可以投放100万只雄蚊用于控制野生蚊子的数量。这场清除行动几乎成功,直到其他国家的蚊子又迁移了过来。无论最后我们选择了哪一种技术,都应该能够普及到世界范围。尽管有接近成功的前例,但遗传性别品系技术仍然没有解决辐射会导致许多雄蚊竞争力下降的问题。

  最新的一项技术完全跳过了辐射。该技术被称为“RIDL”,是“昆虫显性致死释放技术”(Release of Insects carrying Dominant Lethals)的缩写,由昆虫学家卢克·阿尔菲(Luke Alphey)发明。RIDL技术中,雄蚊不必接受辐射照射,因此它们和野生的雄蚊一样健康,一样富有竞争力,但也同样是可育的。不过,它们体内携带着一个致命的基因,能导致幼虫后代在长到吸血成虫之前死亡。目前RIDL技术涉及的一种基因被称为“tTAV”(tetracycline repressible activator variant,四环素可抑制活化剂变体),能产生一种有毒蛋白质,阻塞昆虫细胞内的细胞器活动,使其他基因无法激活,从而导致昆虫死亡。这种技术只在蚊子自身的细胞内起作用,所产生的蛋白质在被其他动物摄食后会被消化降解,从而对任何捕食被改造蚊子及其幼虫的动物没有任何伤害。这是一个完全无毒的体系。“但是等一下,那这些蚊子在实验室里是怎么长到成体的?”也许你会这么问。答案是四环素(Tetracycline),这种常见的抗生素同时也是tTAV的解毒剂。在实验室培育中,研究者会用四环素喂食雄蚊,使它们得以发育为成体,但是到了野外,它们和它们的后代就没有活路了。目前,美国南部和南美洲正在使用RIDL技术对抗蚊子,并且已经使传播登革热的蚊子数量大幅下降;巴西也正在使用该技术阻止寨卡病毒的蔓延。

  目前科学家还开发了一种应对地中海实蝇(学名:Ceratitis capitata)的新技术,未来或许也能用于媒介蚊的防治。这是一种雌性特异性的RIDL技术,其原理是:雄性携带的一个基因能产生某种蛋白,在没有解毒剂的情况下,这种蛋白只会杀死雌性。在该体系中,雌性与被改造的雄性交配之后,会产下完全可育的卵,但其中的雌性后代会在幼虫时期死亡,只有雄性后代能存活到成体。这些雄性携带着被改造的基因,继续与数量变得更少的雌性交配。通过这种方法,人们只要释放一次雄性,就可以引发目标种群中的连锁反应,使其数量逐代减少。

  RIDL是一种神奇的策略,对环境或非目标生物没有任何有害影响,甚至能使人们不必与辐射打交道。不过,由于该技术涉及到基因改造,也就是说改造后的蚊子本质上是转基因动物,这也就意味着有一些“惯犯”会努力尝试阻止它们,有的甚至散布起相当有想象力的谎言,而媒体则往往没有能力分辨事实和谎言,或者根本就不感兴趣。大部分故事担心蚊子释放之后会到处乱飞,并叮咬当地居民。有些文章则宣称这些蚊子是在给人类接种对抗疾病的疫苗,如果真是这样的话就太妙了,可惜并不是。还有的人宣称被这些蚊子叮咬之后会让人变异,这同样是够荒谬的。一些人甚至宣称新生儿小头畸形并不是由寨卡病毒引起的,而是因为那些被释放出来的蚊子,并称这种病是“松散基因综合症”。这种疾病当然是不存在的,而且在生物学上也不可能;事实上,这些人之所以否认真实存在的、由寨卡病毒导致的新生儿小头畸形问题,是为了恐吓人们远离转基因,并更好地销售他们的高价有机产品。这是对真正人类痛苦的无耻利用。幸运的是,你现在将了解一个非常重要的事实:雄性蚊子不会叮人——这几乎可以用来反驳上述所有关于昆虫投放的荒谬描述。雄蚊不会吸血,实际上还会避开人类;而由于投放的只有雄蚊,因此认为被投放昆虫会伤害人类的观点完全是无稽之谈。

  这些技术是否意味着我们能够一劳永逸地摆脱杀虫剂?还没到那个程度。请记住,昆虫节育技术和RIDL都要求释放的雄蚊要远多于野生雄蚊。无论我们培养不育或基因改造雄蚊的效率有多高,只要野生种群的数量过多,那这些技术就永远不能发挥实际作用。相反地,我们需要先用杀虫剂把野外种群的数量降下来,降到一定阈值时,才能使昆虫节育技术和RIDL奏效。此外,如果我们想让整个星球摆脱这些物种,那雄蚊的投放就必须覆盖它们的整个分布范围,而这意味着无比广阔的空间。当然,有进步就是好的,即使无法消灭世界上所有的疾病媒介蚊,我们也已经使全世界范围内蚊媒疾病的死亡率大幅下降。

  不过,再等一下!有一种技术,不仅能在完全不伤害携带者和环境的情况下消灭病原体,而且不需要投放或培育昆虫。首先,让我介绍一下查加斯病(又称美洲锥虫病),由美洲锥虫(学名:Trypanosoma cruzi)引起的一种疾病。美洲锥虫的携带者是锥蝽(锥蝽亚科Triatominae的物种),其中最厉害的两个物种是骚扰锥蝽(学名:Triatoma infestans)和长红锥蝽(学名:Rhodnius prolixus)。锥蝽又被称为“亲吻虫”,因为它们喜欢叮咬人类嘴巴附近的区域吸食血液。它们还有一种令人不适的习惯——吃饱之后就开始排泄。而且,当被叮咬的人抓伤口的时候,会把它们的粪便弄进伤口里,造成感染。查加斯病会带来一些可能致命的症状,比如心室扩大。科学家在锥蝽身上进行过昆虫节育技术的尝试,但后来又有了新的防控策略——转基因共生菌(paratransgenesis)。与对昆虫进行基因改造,使其产生某种蛋白质(转基因)不同,这种新技术是对昆虫体内的共生微生物进行基因改造。以长红锥蝽为例,这种昆虫的体内都具有一种共生细菌——椿象红球菌(学名:Rhodococcus rhodnii),为它们制造维生素,以及其他从血液为主的食物中无法获得的物质。对细菌进行基因改造比较容易,因此科学家开发出了能产生有毒蛋白质(对美洲锥虫而言)的转基因共生体。如果用改造过的椿象红球菌喂食长红锥蝽,后者就会对美洲锥虫免疫,不再成为传播载体。细菌还可以很容易地大量培养,从而省略了昆虫投放的问题。最棒的是,受到感染的锥蝽成虫会将转基因共生菌传递给后代:锥蝽幼虫经常以成虫的粪便为食,从而将椿象红球菌摄入体内(这种细菌无法在我们人类的血管里存活,因此既不会伤害我们,也不会带来什么好处)。这种新技术相当有前景,把含有转基因椿象红球菌的锥蝽粪便投放到美洲锥虫肆虐的地方,最终的结果就是这些寄生虫被完全消灭,而锥蝽安然无恙,整个生态系统也完全不会受到影响。转基因共生菌技术或许还能用在其他地方,科学家正致力于开发适用其他物种的转基因共生菌,比如利用一种基因改造的真菌使疟蚊对疟原虫免疫。

  到这里,你应该已经对是否应该把某个蚊子物种消灭,以及这么做是否可行有清晰的概念了。如果你对另一些昆虫,比如臭虫、蟑螂等也有类似的问题,或许你可以尝试自己来回答一下。你可以问自己:这类昆虫中有哪些物种是真的有害?昆虫节育技术(SIT)是否可行?有没有其他应对相关疾病的方法?如果你对这样的问题感兴趣,可以考虑一下从事医学昆虫学、流行病学、遗传学或(理所当然的)医学等领域的工作,或许我提到的那个诺贝尔奖有朝一日就会属于你。

  与此同时我们应该做什么?

  在全球范围内根除疾病媒介蚊,无论能否做到,也无论是不是一个好主意,都与现实有很长的距离。在那之前,最好的方法是做到局部根除。如果你有一片小池塘,放一些金鱼、锦鲤或孔雀鱼进去吃蚊子幼虫,没必要一定要用食蚊鱼。杀虫剂是另一个不那么理想的选项,因为那些有益的昆虫也会被杀死。不过在紧急情况下也可以酌情使用,比如目前在巴西就使用杀虫剂来对抗寨卡病毒……当然,并不是这些化学药品导致了新生儿小头畸形——无论阴谋论者怎么说,这样的说法都是完全没有被证实的。目前所用的杀虫剂中大多数都是对人体无毒的。

  对于在容器积水中孳生的蚊子,要经常清理容器或者把水排干。注意任何能积蓄雨水的地方,从喂食动物的小碗到花瓶,从旧轮胎到塑料袋或帆布。从这些角落里孳生的蚊子最先叮咬的就是你,因此你所做的一切,都是在为保障公众健康做贡献。最重要的是,这是在保护你自己。当你深入某种蚊媒疾病肆虐的地方时,记得在皮肤或衣物上喷洒防虫喷雾,并在睡觉时挂起蚊帐。对儿童来说,蚊帐的作用非常重要,因为他们在感染疟疾等疾病时症状最为严重。

  想要知道更多信息,可以咨询你当地的传染病媒介防治机构或蚊虫治理的地方网站,也可以咨询当地的专业人士,听取他们对本地区蚊虫防治的建议。你也可以在美国疾病防控中心或美国国家过敏和传染病研究所的网站上了解到与蚊子或其他昆虫为媒介的疾病信息。

 

原文链接:

https://www.quora.com/profile/Matan-Shelomi/Posts/Mosquitoes-Can-we-get-rid-of-them-and-what-would-happen-if-we-did

貓貓的世界征服史:從抓老鼠到沙發馬鈴薯

最近收养了一只黄白色小猫,名唤“奶黄包”,调皮得很,不过养着养着也生出了许多趣味。同时还是推荐最近圆桌派的一期,真是解答了许多疑问,也有诸多同感,07-19期第十七集 吸猫:喵星人的爱与哀愁

=====================================================

貓貓的世界征服史:從抓老鼠到沙發馬鈴薯

作者:寒波

農夫:是擅長抓老鼠的朋友呢

貓不只在台灣,也在世界上許多地方大受歡迎。人類最早是在什麼地方,與牠們發生關係的呢?

目前馴化貓最早的證據,來自塞浦路斯距今 9500 年前的墓葬,有隻貓完整地與人被葬在一起1。為什麼死掉以後還要一直在一起?理由現在已不可考,只能確定那個時候,貓已經與人建立起某種關係了。

貓最初被馴化的地點,應該不是塞浦路斯,而是肥沃月灣,也就是世界最早的農業起源地。科學家推論,貓的馴化與老鼠有關。人類本來以採集狩獵維生,不會儲藏大量食物,也不長期在一地定居;等到一萬多年前農業發明以後,人類開始定居、儲藏糧食,也引來了老鼠;老鼠是貓的狩獵對象,跟著老鼠前來的貓,有了接觸人類的機會,或許,貓就此與最早的農夫成了朋友。

事實上,肥沃月灣中的黎凡特(現在的以色列、約旦、敘利亞一帶),其居民開始定居與儲藏食物,比種田更早數千年。最近研究指出,其實在黎凡特人開始定居,尚未正式成為農夫以前,老鼠就已經出現了2;假如老鼠比本來預期的更早來襲,貓與人結緣的歷史也會更早嗎?這個有趣的題目,目前仍沒有研究。(延伸閱讀 1)

用古貓 DNA 研究馴化史

當今世上的野貓(Felis silvestris)被分為 5 個亞種,所有馴化的家貓都可以追溯到,原產於北非與中東的非洲野貓Felis silvestris lybica)一種,其他 4 種歐洲野貓(Felis silvestris silvestris)、亞洲野貓(Felis silvestris ornate)、南非野貓(Felis silvestris cafra)、中國野貓(Felis silvestris bieti),與家貓之間有情慾交流,不過沒有被馴化過的證據。

一般的馴化動物,與祖先或野生的親戚相較,型態、習性等許多特徵會產生差異,不過家貓與野貓間的很多特徵,變化都很有限。所幸科學家已經知道,可以根據粒線體 DNA 上,一段 286 個核苷酸長的序列,分辨出 5 種亞種;所有馴化貓皆屬於第五型(IV),旗下又可再細分為 5 種:A、B、C、D、E,以 A 與 C 最多。

一隊科學家,搜集許多古代貓的樣本,取得其中 200 多個樣本的古貓 DNA,試圖研究貓的馴化歷史3。樣本最古早的距今 9000 年,最接近現代的則是 19 世紀;比較各地與不同時期的古貓 DNA 以後,研究團隊發現,A 貓與 C 貓的發展史截然不同。

農業誕生後的新石器時代,在中東一帶,以及幾千年後歐洲的古貓,遺傳上以 A 貓為主,還有少少的 B 貓,表示最初與人成為朋友的貓,應該屬於 A 這個粒線體支系。當今另一主流 C 貓是怎麼來的?一些證據指出,古埃及是一個重要的養貓中心;這回論文發現,距今 2800 年起的埃及古貓都屬於 C 貓,因此 C 貓這個支系,應該與埃及關係密切。

古埃及的貓-女神、假木乃伊、沙發馬鈴薯

埃及人開始養貓的年代,遠遠比 2800 年前更早。目前埃及最早有馴化貓的證據,處於古埃及文明尚未正式開始,也還沒有金字塔的 5700 年前,那時算是前王朝時期4。在當時上埃及的城市-希拉孔波利斯(Hierakonpolis,鷹隼城)出土的一處古墓,考古學家發現墓中有與人一起下葬,保有完整骨架的貓,而且 not one,not two,not three……一共有一女一男四小,共 6 隻之多!

隨後數千年,隨著古埃及文明的發達,貓也成為古埃及文化中,常見的藝術、宗教形象。埃及眾神中,有女性貓神芭絲特(Bast/Bastet);古埃及人也製作過許多貓的木乃伊,還因為供不應求,使得黑心商人生產過為數眾多,裡面根本沒有貓的假貨木乃伊。(延伸閱讀 2)

埃及是富裕的農業中心,由眾多描述貓的藝術作品中,可以看見貓的角色,在古埃及經歷過明顯的演變。最早期的作品中,貓在狩獵老鼠;之後的作品裡,貓與人一起打獵;可是更晚期的作品,貓出現在餐桌旁邊。簡直就是,從獵捕老鼠,變成沙發馬鈴薯5

從中東與埃及,前進到世界每一個角落

距今 2800 年的埃及古貓屬於 C 貓,不同於更早之前源自中東的 A 貓。然而 C 貓從何而來,是從中東傳入後在埃及發揚光大,或是在埃及本地獨立馴化而成,由於目前沒辦法得到埃及更早以前的古貓 DNA,因此無法釐清。不過仍能確定,埃及是個重要的育貓中心。

埃及後來屬於羅馬的一員,成為歐亞大陸西部的糧倉,是國際貿易體系中的重要一環,而埃及 C 貓也跟著前進各地。隨後的時光中,C 貓陸續於各處現身,值得一提的是,研究團隊在位於現在德國的波羅的海側,曾經是維京人港口的 Ralswiek,也找到 C 貓的蹤跡,由此推論,擅長航海與貿易的維京人,也曾替傳播 C 貓出了一份力。(延伸閱讀 3)

發源自中東與埃及,可以在船上捕鼠的貓,或許就靠著作為船貓與旅伴的角色,隨著人類最終征服了全世界。

受歡迎的古典虎斑貓

野貓與馴化貓的差異不多,其中之一是貓毛的花紋。野貓的斑紋大部分屬於鯖魚虎斑(mackerel-like tabby),而家貓中,古典虎斑(classic / blotched tabby)的比例很高。貓貓斑紋的型態是由 transmembrane aminopeptidase QTaqpep)基因控制,這次研究也偵測了古貓中,此一基因的版本。

儘管貓的馴化史,可能已經長達一萬年之久,研究團隊卻發現古典虎斑要等到 14 世紀,才在鄂圖曼土耳其首度出現,然而才過了幾百年,古典虎斑卻已經是如今全世界家貓的常見特徵。這表示 14 世紀以後的人,有意挑選配備古典虎斑的貓飼育,此般對外形的偏好,在從前幾千年都沒有發生過。

貓與人,一段良緣

貓最初與人類結緣的理由,可能是獵捕老鼠。有趣的是,最近有其他論文報告,中國北方距今 5000 年左右,新石器時代的遺址中,也發現了馴化的貓科動物-石虎(Prionailurus bengalensis6。這表示小型貓科動物與農夫發展出共生關係,在歷史上發生過不只一次;然而這段關係似乎沒能延續太久,因為今日歐亞大陸東方的貓,仍是源自中東、埃及的血脈,與東亞的石虎無關。(延伸閱讀 4, 5)

時至今日,人類的生活品質比幾千年前大幅進步,與人共同生活的貓,任務也從最初的獵捕老鼠,成了陪伴人類的沙發馬鈴薯(百萬貓奴點頭同意)。這回的研究,大大增進我們對貓馴化歷程的了解;不過粒線體 DNA 畢竟只能反映部分的遺傳歷史,不如整個細胞核基因組,期待未來科學家能取得完整的古貓基因組,拼湊出更詳細的貓族大歷史。

延伸閱讀:

  1. 短篇  人鼠之間-人類開始定居,家鼠也隨之誕生
  2. 假木乃伊風雲
  3. 在船中長眠的武士:十世紀的維京船葬
  4. 貓咪在歷史上被馴化了兩次?
  5. 短篇 中東一萬年前馴化貓,中國5000年前馴化石虎

參考文獻

  1. Vigne, J. D., Guilaine, J., Debue, K., Haye, L., & Gérard, P. (2004). Early taming of the cat in Cyprus. Science, 304(5668), 259-259.
  2. Weissbrod, L., Marshall, F. B., Valla, F. R., Khalaily, H., Bar-Oz, G., Auffray, J. C., … & Cucchi, T. (2017). Origins of house mice in ecological niches created by settled hunter-gatherers in the Levant 15,000 y ago. Proceedings of the National Academy of Sciences, 201619137.
  3. Ottoni, C., Van Neer, W., De Cupere, B., Daligault, J., Guimaraes, S., Peters, J., … & Becker, C. (2017). The palaeogenetics of cat dispersal in the ancient world. Nature Ecology & Evolution, 1(7), 0139.
  4. Van Neer, W., Linseele, V., Friedman, R., & De Cupere, B. (2014). More evidence for cat taming at the Predynastic elite cemetery of Hierakonpolis (Upper Egypt). Journal of Archaeological Science, 45, 103-111.
  5. Ancient Egyptians may have given cats the personality to conquer the world
  6. Vigne, J. D., Evin, A., Cucchi, T., Dai, L., Yu, C., Hu, S., … & Dobney, K. (2016). Earliest “Domestic” Cats in China Identified as Leopard Cat (Prionailurus bengalensis). PloS one, 11(1), e0147295.

文章链接:http://pansci.asia/archives/121908

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

从传说到现实:走进美丽神奇的海螺世界

蓝蓝的大海水,蓝蓝的水上天。蓝蓝的海水中,孕育了无数美丽而神奇的海螺。

在我国沿海许多地方,从福建的东海之滨,到海南三亚的黎族村庄,都流传着海螺姑娘的传说。1955年,著名作家和诗人阮章竞根据民间传说创作了童话诗《金色的海螺》。1963年,上海美术电影制片厂将这个故事搬上了银幕,精美的画面和悠扬的配乐,使这部同名的剪纸动画片成为电影史上的经典。

“金色的海螺”的图片搜索结果

《金色的海螺》讲述了这样一个故事:大海的那边居住着一个勤劳的青年,一年三百六十个早晨,无论大海涨潮退潮,他都要出海打鱼。有一天,青年在海中捞到一个金色的海螺,他把海螺带回家,养在水缸里。之后,在青年出海的时候,海螺就化作一位美丽的少女,帮助青年烧火做饭,缝补衣裳。这位海螺姑娘其实是海中珊瑚仙岛上的蓝海仙女,从前是被打渔少年救过的小金鱼。为了报答救命恩人,她变作海螺姑娘,决定陪在青年身边,每天一同劳动、歌唱。

三年之后,海螺的母亲海神娘娘发现了海螺的踪迹,她威胁青年离开海螺,否则就以水淹人间。面对威逼和利诱,青年表现出了无比的勇敢和真诚,并最终打动了海神娘娘。他和海螺姑娘终于幸福地生活在一起。

其实,在中国民间,类似海螺姑娘这样的传说并不少见,比如在很多地方流传的田螺姑娘传说,也是差不多的故事内容,只不过海螺变成了田螺。为什么会出现这么多如此相似的“螺女”传说呢?一方面,这说明了螺与普罗大众的生活密切相关。“螺”其实并不是专业的生物分类名称,而通常是腹足纲中具有螺旋形外壳的所有水生种类的统称。在西方语言中,一般不会区分水生的螺类和陆生的蜗牛。在海洋中生活的螺被称为海螺,淡水中则经常被称为田螺或螺蛳。无论是海螺还是田螺,都是普通百姓喜爱的美食——这或许也是海螺姑娘或田螺姑娘的举动往往与饮食联系在一起的原因。

另一方面,螺的外形是女性的象征,许多女性也会用螺壳作为装饰品,或者模仿螺壳形状梳理自己的头发——这种发型被称为“螺髻”。在民间文化中,螺还具有占卜、预言的功能,某些种类的螺壳还是重要的宗教法器和身份象征。此外,有些海螺还曾经在人类社会发展历史中扮演过重要的角色,比如宝贝科的货贝就曾经在许多国家被作为原始货币。

 四大名螺

我们常常可以听到所谓“四大名螺”的说法,这里指的是法螺、鹦鹉螺、唐冠螺和万宝螺四种具有高观赏性的海螺。从古至今,这四种海螺一直受到人们的喜爱,也受到许多爱好者的追逐。一方面,通过这些海螺,我们感受到了大自然的神奇,感受到了海洋生物之美;另一方面,人类的捕捉和追捧,也使其中一些海螺物种数量不断减少,给海洋生态系统带来了潜在威胁。以下,我们就通过这四种著名的海螺,走进美丽而神奇的海螺世界。

 法螺

在佛教中,法螺是一个重要的法器。法螺又称大法螺、凤尾螺,是一种分布范围广泛的大型海螺。法螺是珊瑚礁中体型最大的软体动物之一,壳长可以达到60厘米。磨去壳顶之后,法螺可以制成号角。在重要的宗教仪式中,声音占据着非常重要的地位,往往被用作时空界限的标志,这其中就包括钟声、鼓声和螺声等。

在珊瑚礁生态系统中,法螺还具有十分重要的生态功能。它们是少数几个能摄食长棘海星的物种之一。长棘海星是一种体型庞大、破坏性极强的海星。据报道,这种海星已经在大堡礁和西太平洋的珊瑚礁造成了大量珊瑚死亡。法螺具有灵敏的嗅觉系统,在追踪到长棘海星之后,它会迅速靠近,利用身体重量和强有力的腹足包裹住长棘海星的身体。接着,法螺将如同锉刀的齿舌伸入长棘海星的中央体盘,并分泌酸性的消化液。经过大约一个小时,长棘海星的肉质部分基本被法螺吃掉,礁石上只留下软塌塌的残骸。

近年来长棘海星的爆发是否与法螺等天敌的数量下降有关,目前还存在争议,但毫无疑问的是,法螺对控制长棘海星的肆虐有着重要作用。法螺对水体环境要求很高,而且生长缓慢,如今活体的大型个体已经越来越少见。在澳大利亚和其他一些国家,法螺已经得到了法律保护,但在世界许多地方(包括互联网上)依然可以合法买卖。

 鹦鹉螺

许多人第一次听说鹦鹉螺,或许是在法国小说家儒勒·凡尔纳的《海底两万里》中,书中出现的潜艇就被称为“鹦鹉螺号”。巧合的是,在这本书出版近半个世纪后,世界上第一艘实际服役的核动力潜艇也被命名为鹦鹉螺号,虽然这个名称承继自1803年服役的一艘美国海军多桅纵帆船与之后沿袭此名的两艘常规动力潜艇。

鹦鹉螺是一种非常独特的海螺。首先,它们不像其他绝大多数海螺一样属于腹足纲,而是属于头足纲,与章鱼、墨鱼和鱿鱼的关系更近。其次,它们又是现生头足纲动物中唯一具有外壳的种类。它们的外壳薄而轻,以螺旋形盘卷起来,形似鹦鹉的嘴,也因此得名“鹦鹉螺”。虽然船蛸这类远洋章鱼具有类似贝壳的结构——它们也被称为“纸鹦鹉螺”——但这是只有雌性个体才能分泌形成的卵盒结构,也不像鹦鹉螺一样具有填充气体的腔室,因此并不是真正的头足纲贝壳。

说到鹦鹉螺的外壳,就不得不提到等角螺线。法国哲学家、数学家和物理学家笛卡尔在1638年发现了等角螺线,之后数学家雅各布·伯努利对其重新进行了研究,并发现了许多特性。鹦鹉螺的外壳纵切之后,切面呈现出优美的等角螺线,而等角螺线本身又与黄金分割密切相关,这不禁让人感叹生命的神奇。

切开鹦鹉螺的外壳之后,我们还可以看到其中被隔板分隔而成的三十余个壳室。鹦鹉螺的身体居住在最后一个大壳室中,其余壳室则充满气体(主要为氮气)。随着鹦鹉螺的成长,壳室会周期性向外侧推进,外套膜后方则分泌出碳酸钙和有机物质,形成新的隔板。在各个壳室之间有一个贯穿的细管,可以输送气体。鹦鹉螺可以通过调节气体来控制上浮、下沉和水平移动,这种方式与潜艇的原理十分相似。

鹦鹉螺分布于印度洋和太平洋。在鹦鹉螺的主要产地法属新喀里多尼亚,还以鹦鹉螺作为国徽的主要图案。目前,这些在地球上存在了数亿年,外形、习性却又变化极少的“活化石”已经数量稀少。由于对生活环境有数个大气压的水压要求,它们也很难进行人工饲养。2016年,所有鹦鹉螺科物种都被列入了濒危野生动植物国际贸易公约(Convention on International Trade in Endangered Species of Wild Fauna and Flora,CITES,又被称为华盛顿公约)的附录Ⅱ。在我国,鹦鹉螺属于国家一级保护动物。

 唐冠螺

唐冠螺又称为冠螺。顾名思义,这个名称来源于唐冠螺的外形酷似唐代的冠帽。无独有偶,唐冠螺在英文中被称为“horned helmet”,意思是角盔——你可以想象一下古代维京人头上戴的有两只尖角的头盔。

唐冠螺也是一种珍贵的大型海螺,螺壳又大又厚,长度在5厘米到41厘米之间,高度可达30厘米。唐冠螺壳面呈灰白色到浅橙色,具有金属光泽,上方长有许多较大的角状突起。在狭长的壳口周围,具有很厚的片状突起,并形成一个三角形的平面,呈鲜艳的橙色。独特的形状和颜色,使唐冠螺成为许多人追逐的观赏螺类。

唐冠螺主要分布于温暖海域,包括我国台湾、西沙群岛、南沙群岛海域,以及印度—西太平洋暖水区。它们通常珊瑚礁附近沙质或碎珊瑚底质的浅海中活动,以海胆等棘皮动物为食。虽然还没有被列入国际自然保护联盟的濒危物种红色名录,但唐冠螺在许多地方已经受到人类的严重威胁。由于唐冠螺也能捕食长棘海星,因此它们在澳大利亚昆士兰州受到严格的保护。在我国,唐冠螺属于国家二级保护动物。

 万宝螺

四大名螺的最后一个成员是万宝螺,属于唐冠螺科,与唐冠螺在分类学上比较接近。万宝螺也是一种大型海螺,螺壳又厚又沉,壳体长度可达17厘米。万宝螺壳面的颜色鲜艳,深浅不一的白色和橙红色纵横交错,并且富有光泽。和唐冠螺一样,万宝螺也主要栖息在靠近珊瑚礁的沙质海底,是海胆的重要捕食者。它们也主要分布在热带印度—太平洋海域。

四大名螺只是海螺世界中微不足道的一小部分,大海中还生活着无数同样美丽的海螺,比如色彩斑斓如同虎皮的虎斑宝贝(又名黑星宝螺,为国家二级保护动物),比如具有超过100根棘刺、如同一把精美梳子的维纳斯骨螺,又比如外形类似圆锥、能分泌毒素的芋螺等等。所有这些,都是五光十色、精彩纷呈的海洋世界中不可或缺的部分,值得我们的欣赏和珍惜。

 

略删改后发表于《知识就是力量》2017年6月期

空调如何改变世界

想象一下,如果我们能够随意地控制天气,按一下按钮,天气就能变得温暖或凉爽,潮湿或干燥,那将会意味着什么?  想象一下,如果我们能够随意地控制天气,按一下按钮,天气就能变得温暖或凉爽,潮湿或干燥,那将意味着什么?
空调是成就现代经济的50大发明之一空调是成就现代经济的50大发明之一

  

        想象一下,如果我们能够随意地控制天气,按一下按钮,天气就能变得温暖或凉爽,潮湿或干燥,那将意味着什么?

  答案将会有很多:不再有干旱和洪水,不再有热浪和结冰的道路,沙漠将变成绿洲,农作物将不再枯萎。事实上,为了改变气候,人类提出了一些听起来很不可思议的主意,包括在大气层上层喷洒硫酸,或是往海水里抛洒生石灰。

  然而,即使科技发展到今天如此先进的地步,我们还是无法对天气进行精确的控制——至少是在室外如此。从空调发明之后,我们已经能够控制室内的“气候”,而这也带来了一些深远而且意想不到的影响。

  自从我们的祖先掌握用火之后,人类便能够自己取暖,相比之下,降温的挑战性更大一些。脾气古怪的罗马皇帝埃拉伽巴路斯曾经派遣奴隶到高山上挖取冰雪,然后堆在他的花园里,利用微风将凉爽的空气吹到室内。

在人工制冰技术出现之前,如果新英格兰州的冬天变得温和,就有可能导致一场“冰荒”。在人工制冰技术出现之前,如果新英格兰州的冬天变得温和,就有可能导致一场“冰荒”。
威利斯?开利很快发现了这种湿度控制设备具有更广泛的应用潜力威利斯·开利很快发现了这种湿度控制设备具有更广泛的应用潜力

  

湿度问题

  毫无疑问,这并不是一个可以推广的解决方法。但是直到19世纪时,美国波士顿一位名叫弗雷德里克·图多尔(Frederic Tudor)的企业家还通过类似的方法,在解决降温问题的同时积累了大量的财富。他从冬天新英格兰的冰冻湖泊里切取冰块,用锯末进行隔热,然后装船运到加勒比海、欧洲甚至遥远的印度等地区,帮助那里的人们度过炎热的夏季。在人工制冰技术出现之前,如果新英格兰州的冬天变得温和,就有可能导致一场“冰荒”。

  我们所熟悉的空调出现在1902年,但在它最初出现时,却与人类的舒适需求无关。当时,纽约的Sackett & Wilhelms印刷出版公司在进行彩色印刷时时常会受到湿度的影响。例如,为了印出4种颜色,同一张纸必须印刷4次,而如果两次印刷之间湿度发生改变,那纸张就会轻微膨胀或收缩,即使1毫米的变化都会使最终效果变得非常糟糕。

  这家印刷出版公司找到了制作暖气机的水牛城锻造公司,希望对方开发一个控制湿度的系统。一位名叫威利斯·开利(Willis Carrier)的年轻工程师发现,装有压缩氨的线圈可以使循环空气降温,并使其湿度稳定控制在55%。印刷出版公司的问题迎刃而解。

  更广泛的应用

  水牛城锻造公司很快就开始向那些饱受湿度问题之苦的地方出售威利斯·开利的发明,比如面粉厂和吉列剃须刀集团——过度潮湿会使剃须刀生锈。

  对这些早期的工业客户而言,把温度降低到对工人更加舒适的水平并不重要,这只是附带的好处。但是,威利斯·开利很快发现这种湿度控制设备具有更广泛的应用潜力。到了1906年,他开始探索将这种“舒适”应用到剧院等公共建筑物上。

  这是一个明智的选择。历史上,剧院往往会在夏季关门歇业,因为此时会面临多种安全隐患:没有窗户,人群拥挤在一起,在电灯出现之前还需要用火来提供照明。新英格兰的冰块在一段时间内曾短暂流行过。1880年夏天,纽约的麦迪逊广场花园一天内使用了4吨冰块,一台2.4米的风扇在冰块上方吹气,然后通过管道将冷却空气吹向观众。

  威利斯·开利的“气候调节器”显然更加实用。在电影院迅速成长的20世纪20年代,大众第一次感受到了空调的凉爽,这在当时也很快成为了电影的一大卖点。

空调的发明改变了美国所谓“太阳带”地区的建筑结构空调的发明改变了美国所谓“太阳带”地区的建筑结构

  

引领变革的技术

  好莱坞夏季大片的传统和大型购物商场的崛起,都可以直接追溯到威利斯?开利的发明。但是,空调不仅仅能提供便利,它还是一项革命性的技术,对人类在哪里生存以及如何生存都有着深远影响。

  电脑如果过热或过于潮湿,就会停止工作,因此空调可以使服务器场不间断工作,以维持互联网的运行。事实上,如果工厂无法控制空气质量,我们根本就无法得到制造电脑所需的硅芯片。

  空调还使建筑发生了变革。从前如果想在炎热气候下建造一座凉爽的建筑,就意味着厚厚的墙壁和高高的天花板,还需要阳台、庭院和背向阳光的窗户。在美国南部流行一种带通道的住宅(dogtrot house),即把房子中间辟为过道,以利于通风。在空调出现之前,建设玻璃幕墙的摩天大楼并不明智——在高层工作的人无疑会受到炙烤。

  空调也改变了人口分布。如果没有空调,我们很难想象迪拜或新加坡这样的城市会崛起。在20世纪的下半程,美国的住宅单位快速增长。所谓的“太阳带”——美国南部北纬37度以南的温暖地区,从加利福尼亚州到佛罗里达州——占美国总人口的比例从28%暴涨到40%。

  随着许多退休人员从北方移居到南方,他们也改变了当地的政治平衡。作家史蒂文·约翰逊(Steven Johnson)很自信地宣称,正是空调成就了罗纳德·里根的当选。里根在1980年掌权,当时美国人使用的空调数量超过全球一半以上。

  从很多方面看,空调的快速发展是一件好事。研究表明,空调降低了酷热天气时的死亡率。酷热会使监狱囚犯变得暴躁,而空调可以使他们冷静下来。当考场的气温超过21或22摄氏度时,学生在数学考试中的分数便开始下降。在办公室内,空调可以使上班族更有效率。根据早期的一项研究,空调使美国政府的打字员多做了24%的工作。经济学家们也自此证实了生产力与保持凉爽之间的关系。

在地铁运输系统里,列车的冷却系统也会使月台上的人们感到闷热。在地铁运输系统里,列车的冷却系统也会使月台上的人们感到闷热。

  

难以忽视的现实

  美国经济学教授威廉·诺德豪斯(William Nordhaus)根据经纬度将全世界划分为许多单元,并列出每个单元内的气候、经济产出和人口。他发现,平均气温越高的地方,人们的生产力水平就越低。

  另一项研究显示,对于气候炎热的国家,气温高于平均值的年份不利于生产力的提高,而在气温较低的年份则恰好相反。研究者指出,生产力的峰值出现在气温18到22摄氏度的时候。

  然而,一个不容忽视的问题是:当你把室内变得凉爽时,代价是室外变得越来越热。在美国亚利桑那州凤凰城进行的一项研究显示,由空调排放到室外的热空气会导致城市夜间温度上升2摄氏度。当然,气温的上升会使空调使用得更多,从而使室外变得更热。在地铁运输系统里,列车的冷却系统也会使月台上的人们感到闷热。

  接着是空调的能量来源问题。空调运行所需的电能主要来自天然气或煤炭的燃烧,而空调机所用的冷却剂泄漏之后也会成为强效的温室气体。

  目前的空调技术已经越来越清洁、环保。不过,对空调的需求增长得如此迅速,即使是最乐观的估计,到2050年时,空调对能源的消耗都将增长8倍。对于气候变化问题而言,这是一个令人担忧的消息。毕竟,控制室外的气候远远超出了目前人类的能力范围。

现实世界中的可怕僵尸

原来不仅动物界中有僵尸,植物界也有僵尸,而且更加彻底,更加惊悚

—————————————————————————————————-

        一些真菌、病毒和细菌演化出了一种令人脊背发凉的传播方式:将宿主变成毫无自主意识的僵尸。

  在小说、影视剧中,僵尸给我们的印象是行为凶猛、生吃人肉的半人半尸。这样的场景或许永远也不会成真,但是在自然界中,有许多动物和植物也会变成类似的“僵尸”。有时候现实会比想象更令人恐惧。

  有些动物在受到微生物或寄生虫感染之后,行为会发生巨大改变,这可能会让一些人感到非常不适,但事实上,这可以说是一种十分“完善”的自然行为。我们甚至还可以找到4800万年前僵尸蚂蚁的化石证据,它们被感染后的形体在树叶上留下了明显的痕迹。

  以下,就让我们来盘点一些比小说情节更加可怕的真实“僵尸”。

  僵尸蚂蚁

被偏侧蛇虫草菌(学名:Ophiocordyceps unilateralis)感染的弓背蚁被偏侧蛇虫草菌(学名:Ophiocordyceps unilateralis)感染的弓背蚁
被蛇形虫草属真菌感染,已经死亡的蚂蚁(学名:Formicidae sp.)被蛇形虫草属真菌感染,已经死亡的蚂蚁(学名:Formicidae sp.)

  几年前,马特·费舍尔(Matt Fisher)在法属圭亚那的茂密丛林中进行夜间科考巡查时,遇见了一个可怕的场景。“我们发现了被真菌感染的昆虫尸体,紧紧抱住植物高处,可怕的子实体从它们的头部穿出来,”他回忆道。

  作为伦敦帝国学院的真菌流行病学家,马特·费舍尔马上就明白了眼前发生了什么。这些都是“僵尸”蚂蚁,被寄生的真菌控制了身体和神经系统,使它们爬到植物高处并一动不动。在它们死亡的时候,真菌孢子会从树上抛洒下来,感染下面路过的蚂蚁,使真菌传播到更远的地方。

  在小说和影视剧中,被僵尸咬过的人也会变成僵尸,而这些蚂蚁也会“致命一咬”,只不过是为了固定在植物上。有时候,这也是它们的“最后一咬”,在紧紧咬住叶脉之后随即死去。

  能引起这种行为的真菌属于蛇形虫草属(Ophiocordyceps)。根据真菌物种的不同,受到感染的蚂蚁会无意识地爬到适宜真菌生长的特定环境,再感染其他蚂蚁。

  这其中最著名的或许要属偏侧蛇虫草菌(学名:Ophiocordyceps unilateralis),它们能驱使宿主爬到树叶下方结束自己的生命。另一种学名为Ophiocordyceps australis的真菌在感染蚂蚁之后,则会使后者死在树林地面的落叶之中。

  对于比自己复杂得多的生物体,这些真菌是如何产生影响的呢?要解答这个问题并不容易。大卫·休斯(David Hughes)、哈里·伊文斯(Harry Evans)及他们的同事对虫草属(cordyceps)真菌进行了数十年研究,希望找出这一问题的答案。他们发现,不同的蛇形虫草属真菌已经针对不同宿主蚂蚁的生活史周期,演化出不同的寄生策略。这是“一个令人惊叹的共同演化例证,”伊文斯说道。

  在2016年的一篇文章中,伊文斯等人解释称,真菌很可能利用一系列的酶来改变宿主蚂蚁体内的反应过程。打个比方,这些酶可能改变了某些基因的表达,进而影响蚂蚁的行为。有研究已经发现,一旦“僵尸化”,蚂蚁的肌肉组织会逐渐分解。

  宿主蚂蚁的神经系统也可能受到了直接操控,而对神经递质或类似多巴胺等“化学信使”的控制也会改变蚂蚁的行为。然而,科学家对这些相互作用并没有完全了解。唯一确定的是,更多的真菌-昆虫僵尸还在不断被发现。“我们接下去想解决的问题是:同样的事情会不会发生在蜘蛛身上,”伊文斯说,“看起来答案将是:是的,确实会这样。”

  如今这些真实的僵尸甚至还会影响小说故事中的僵尸形象。随着虫草属真菌的知名度越来越高,它们已经启发了一些关于“不死者”的现代传说。在一些小说和视频游戏中,人类变成僵尸不再是因为感染僵尸病毒,而是被真菌寄生。

  僵尸寄生虫

  当两个生物体发生直接相互作用并生活在一起时,这种现象被称为“共生”。寄生虫与宿主之间也属于共生关系。在昆虫世界中,这样的例子不胜枚举。

  比如,刻绒茧蜂属(Glyptapanteles)的物种会将卵产在毛毛虫的体内。在这些卵孵化之后,幼虫会以宿主毛毛虫的体液为食,并最终从毛毛虫体表钻出来,在附近结成一个茧。不过,此时这些在寄生过程中受到严重损伤的毛毛虫依然活着,并且像“僵尸保镖”一样,通过甩动头部来赶走靠近的其他昆虫。研究这一现象的科学家发现,当僵尸毛毛虫在场的时候,靠近蜂茧的掠食者数量下降了一半,这对刻绒茧蜂来说毫无疑问是巨大的生存优势。

体型微小的寄生蜂Euderus set体型微小的寄生蜂Euderus set

  刻绒茧蜂属于拟寄生物(parasitoid),即在幼虫期寄生在宿主体内,后期将宿主杀死,成虫营自由生活的生物。在寄生蜂中,有许多“拟寄生”关系的例子。

  凯利·韦纳史密斯(Kelly Weinersmith)是美国莱斯大学的生态学家。2017年初,他对一种学名为Euderus set的寄生蜂进行了研究。这种寄生蜂会等待其他种类的蜂在植物表面造成虫瘿——植物体上由于昆虫产卵寄生而引起的异常发育组织。韦纳史密斯的同事斯科特·伊根(Scott Egan)在一次户外家庭散步时发现了一个非同寻常的虫瘿。这个虫瘿是由一种学名为Basettia pallida的蜂所刺激形成的。

Bassettia pallida死在自己挖开的洞口中Bassettia pallida死在自己挖开的洞口中
Bassettia pallida是一种寄生在橡树上的蜂类,其本身又会被另一种新发现的寄生蜂discovered wasp寄生  Bassettia pallida是一种寄生在橡树上的蜂类,其本身又会被另一种新发现的寄生蜂discovered wasp寄生

  通常情况下,Basettia pallida会把卵产在虫瘿内,孵化出来的幼虫长成之后,会挖开一个洞,从虫瘿里面飞出来。然而,当寄生蜂Euderus set介入之后,Basettia pallida的命运就不那么美好了。Euderus set也会将卵产在虫瘿里。

  “我们不知道其中的机制是什么,但这种寄生蜂能让先来的蜂挖开一个出口,”韦纳史密斯说,“但这个洞口要比正常情况小一些,这些蜂(Basettia pallida)不仅出不去,还会卡在洞口,最后死掉。”Euderus set幼虫会吃掉被卡住而死亡的Basettia pallida,使自己发育长大。“当发育完成之后,他会从宿主的头部爬出来,”韦纳史密斯说道。

  所以,寄生虫招来了寄生虫。第一种蜂,寄生在树上的Basettia pallida,变成了某种自杀性的僵尸,并为寄生蜂Euderus set提供食物。韦纳史密斯称,这两种蜂类的寄生方式,前一种受制于后一种,可以说是非常罕见的“超操控”现象。

  性僵尸

  如果僵尸就是行为发生巨大变化,以利于寄生者生存的生物,那我们还可以在韩国找到另一个可怕的例子。这个例子的主角是东北雨蛙(学名:Hyla japonica,又称日本雨蛙)。2016年3月,首尔大学的布鲁斯·瓦尔德曼(Bruce Waldman)和学生Deuknam An发表了一篇论文,展示了蛙壶菌(学名:Batrachochytrium dendrobatidis)对东北雨蛙令人瞠目结舌的行为操控能力。

  蛙壶菌是许多蛙类的严重威胁,但是当东北雨蛙种群被这种真菌感染之后,它们似乎并不会突然就大规模死亡。瓦尔德曼等人分析了42只雄性东北雨蛙的求偶鸣叫,发现其中9只感染蛙壶菌的个体具有更快、更久的叫声——使它们在潜在交配对象眼中变得更有吸引力。

东北雨蛙在感染蛙壶菌之后会改变求偶叫声东北雨蛙在感染蛙壶菌之后会改变求偶叫声

  论文发表之后,瓦尔德曼和他的团队又对当地健康东北雨蛙的叫声进行了录音,然后把它们带回实验室研究。在这些个体感染蛙壶菌之后,研究者再次进行了录音。在另一个实验组中,东北雨蛙在感染蛙壶菌后又接受了治疗,它们的叫声变化也被记录了下来。结果发现,蛙壶菌感染直接导致了两组东北雨蛙的叫声变化。

  “不过,我们还是不能确定这些叫声差异是真菌操纵宿主的结果,”瓦尔德曼说道。换句话说,这种变化或许是真菌感染在东北雨蛙体内引起的其他化学反应导致的。对此马特·费舍尔表示,这些蛙类可能本质上变成了某种“性僵尸”,其感染后与配偶的互动只是为了增加真菌传播的机会。“当然,这还不是一个被证实的假说,但数据相当有力,”费舍尔说道。

  变异僵尸植物

  或许自然界中最令人惊奇的僵尸例子不是行为变得诡异的动物,而是某些发生变异的植物。

  英国约翰英纳斯研究中心(John Innes Centre)的Saskia Hogenhout及其同事发现,一类被称为“植原体”(phytoplasma)的细菌会将无助的植物转变为僵尸。他们在2014年发表了这一研究结果。

  这类细菌的传播需要借助一些吸食植物汁液的昆虫,比如叶蝉。然而,为了吸引这些病原体运输工具,受感染的植物首先必须接受细菌的驱使。“这些寄生细菌似乎完全掌控了植物,” Hogenhout说道。

叶蝉可以使细菌在植物之间传播叶蝉可以使细菌在植物之间传播
翠菊黄化植原体导致一枝黄花出现变叶病翠菊黄化植原体导致一枝黄花出现变叶病

  Hogenhout的团队发现,植原体会分泌一些改变植物内部分子过程的蛋白质。更确切地说,它们可以改变植物的转录因子——调控基因转录的蛋白质。只有在转录因子的作用下,植物才能长出叶、花、茎干等不同的部分。

  植原体的蛋白质侵入植物体内之后,取代了植物本身的蛋白质,使其开始发生形态的改变。植物的花开始变成绿色,本质上变成了叶。这种转变使植物对某些昆虫更有吸引力,而这些昆虫可以将植原体带到新的宿主植物上。“很显然,这种寄生方式介入了非常基本的植物生理过程,改变了植物的身份,而这正是僵尸的真正含义,”Hogenhout说,“它们获得了一个不同的身份。”

  僵尸植物是十分有趣的例子,因为植物本身最终并不会因感染植原体而死,而只是变成了传播细菌的有效工具。正如马里兰大学的生物学家乔恩·丁曼(Jon Dinman)所指出的,一些成功的“僵尸”式感染会让宿主一直活着。

  通常情况下,只有当生物体的“毒力”——伤害其他生物的能力——受到约束时,疾病才最有可能进行传播。这也正是这些僵尸植物身上所发生的事情。幸运的是,人类并不会受到这些植原体的感染。不过,对许多昆虫和其他生物来说,情况就不是这样了。全世界的森林中存在着无数的僵尸宿主,它们的身体和思维已经完全被寄生者扭曲。

原文:

http://www.bbc.com/earth/story/20170313-real-life-zombies-that-are-stranger-than-fiction

复活灭绝生物:选哪一种最合适?

真猛犸象的艺术想象图真猛犸象的艺术想象图
最后一只袋狼(学名:Thylacinus cynocephalus)死于1936年最后一只袋狼(学名:Thylacinus cynocephalus)死于1936年
一对渡渡鸟(学名:Raphus cucullatus)渡渡鸟(学名:Raphus cucullatus)

  复活灭绝动物或许很快就将成为现实,国际自然保护联盟(International Union for the Conservation of Nature,IUCN)已经在制定计划,鼓励对这项技术的合理使用。

  想象一下,当你踏上毛里求斯岛的土地时,渡渡鸟会一摇一摆地向你发出问候;或许,你更喜欢前往西伯利亚荒野,一睹猛犸象的雄伟身姿;要不然,去澳大利亚看看塔斯马尼亚虎,也就是袋狼,或者到新西兰寻找巨大的恐鸟。当然,这样的生态旅行目前都还无法实现,因为所有这些奇特生物都已经灭绝。

  或许不远的将来,我们可以见到复活的灭绝动物,科学家正在研究使它们重现世间的技术。很自然地,我们会将复活计划与那些最具有魅力的灭绝物种联系起来,谁会想到圣赫勒拿橄榄(学名:Nesiota elliptica)呢?或者巴拿马树蛙(学名:Ecnomiohyla rabborum)?后者的最后一位成员被称为“Toughie”,于2016年9月在美国乔治亚州的亚特兰大植物园去世,宣告了又一种两栖动物的灭绝。

  那么,你会如何选择复活哪一种灭绝生物呢?

  我们或许应该询问专家,但目前还找不到合适的人。科技发展还没有先进到能切实可行地复活灭绝物种。就目前而言,围绕在复活话题周围的大部分只是对着水晶球来预测未来。尽管如此,许多专业人士也对这种可能性展开了十分严肃的探讨。

  国际自然保护联盟的职责是评估每个物种的保育状态,他们很自信地认为,复活技术最终会成为一个很可行的选项。事实上,该组织还在2016年5月发表了一份非同寻常的文件,对如何管理正在灭绝的物种提出了指导意见。

  加拿大卡尔加里动物园的保育和科学主管阿克塞尔(Axel Moehrenschlager),以及新西兰奥塔哥大学的菲尔·塞登(Phil Seddon)参与起草了这份指南。他们都是“再引入”——将(活着的)生物引入它们曾经生活的景观中——领域的专家。毕竟,复活灭绝生物和生物再引入在概念上有一定的相似性。

  他们指出,复活灭绝生物的目标不应该是简单地培育出单独个体,供动物园进行展示。相反,复活灭绝生物应当被视为与现有再引入项目类似的过程:目标应该是产生具有遗传多样性、种群可以延续、生活在健全栖息地中的生物。

  2013年,一场有关复活灭绝生物的TEDx讨论激起了人们对这一问题的想象,也带来了更多的争论。在那之前,研究者主要关注的问题是这一技术能否实现。阿克塞尔说:“但我们(IUCN)要问的是,在什么样的条件下可以进行这样的工作,以及这对保育工作意味着什么?”

  “我们现在还有一段时间,可以让人们思考可能会遇到的复杂情况,”塞登说道。国际自然保护联盟并不十分支持复活计划。他们提前起草了这份指南,是为了在复活技术成为保育工作者的工具之后,能有与之配套的行为准则。即使是人们熟悉的物种,再引入原来的栖息地时也有种种不确定性;因此在考虑引入一个已经灭绝成千上万年的物种时,更不能忽略任何可能的风险。

  塞登称,将现有物种引入到它们已经消失很久的生境时,会遇到各种各样意想不到的结果。在一个生态系统中,每个物种都扮演着各自的角色。例如,食草动物可以使植被生长得到控制,而顶级掠食者又控制着猎物种群数量的稳定。

  “我们仍然秉持着生态系统功能性的观点,但我们也了解,某些物种比其他物种更不显得多余,”塞登说,“复活的灭绝动物可能会填补生态系统中的某些空白,或者发挥同样的功能。”这一概念与生态复位项目十分相似。阿克塞尔描述了在塞舌尔群岛和加勒比海岛屿中重新引入象龟的过程。这些象龟能发挥关键的食草功能,就像之前存在过的那些象龟物种一样。

巴拿马树蛙(学名:Ecnomiohyla rabborum)已经灭绝巴拿马树蛙(学名:Ecnomiohyla rabborum)已经灭绝
一只阿尔达布拉象龟(学名:Aldabrachelys gigantea)阿尔达布拉象龟(学名:Aldabrachelys gigantea)

  世界范围内的生态复位和再引入项目普遍遵循国际自然保护联盟的指南,以此决定引入的物种,以及这些物种应该去的地方。那么,是否可以利用类似的理论模板,选择一种灭绝物种进行复活呢?

  2014年,阿克塞尔和塞登提出了一个包含10个问题的筛选试验,希望找出可能的候选复活物种。这些问题涉及了灭绝的原因、栖息地需求,以及再引入时对环境的冲击和潜在风险。比如,我们是否知道该物种灭绝的原因,以及我们能否列出当前或未来引发其灭绝的因素?如果我们不知道它当初为什么灭绝,那在它复活之后要保护它不再灭绝几乎就是不可能的。

  对这一物种来说,现在是否还有合适的栖息地,未来这些栖息地是否会一直存在?为了回答这个问题,保护工作者需要了解候选物种对气候、物理空间和食物等方面的需求。

  最后,我们能否预测、缓解并控制复活物种所带来的冲击和潜在风险?再引入的物种可能会消灭生态系统中现有的成员,或者传播能感染牲畜和人类的疾病。它们可能会干扰农业或人们的日常生活。如果诸如此类的场景变成现实,我们处理问题的难度会有多大?

  在一个物种被选中进行复活之前,它必须通过所有这些冗长的测试。“如果在测试中失败,你就出局了,”阿克塞尔说,“即使你通过了,你也只是足够进入下一阶段的评估而已。”研究人员对3个候选物种进行了测试,分别是袋狼、白鱀豚和加利福尼亚甜灰蝶。它们的命运会如何呢?

  国际自然保护联盟于2006年宣布白鱀豚功能性灭绝(尽管2016年10月有过未经证实的目击记录)。这种淡水鲸类生活在世界上人口最为密集的地区之一,面临着环境污染、捕猎和栖息地丧失等威胁。有些个体在被渔网缠住之后很快死去。

  所有威胁白鱀豚生存的因素依然存在。工业废水继续流入长江,导致栖息地进一步退化。与其他任何物种一样,如果无法找到合适的地方让白鱀豚健康生存,那放归它们的努力就是徒劳的。

  “如果没有合适的栖息地,而且威胁无法消除,那么做这些事情就没有任何意义,”阿克塞尔说,“在复活那些可能没有任何野外存活希望的物种时,需要考虑到伦理、道德、后勤保障和资金投资等问题。”

  对于加利福尼亚甜灰蝶和袋狼,情况似乎更乐观一些。最后一只袋狼死于1936年。捕猎、栖息地丧失和缺乏食物是袋狼灭绝的主要原因。这种有袋类动物生活在混合森林、湿地和近海灌木丛中,部分栖息地目前还完整保留着。事实上,它们甚至曾经被保护起来,以确保袋獾有足够的领地——二者具有重叠的栖息地。没有研究表明袋狼携带任何异常疾病,复活它们应该不会遇到多少抗议,除了可能有农民会担心偶尔丢失几只羊的问题。

  加利福尼亚甜灰蝶曾经生活在旧金山地区,其栖息地随着城市的扩张而不断缩小,并最终在1941年宣布灭绝。不过,目前金门公园中还保留着一些合适的栖息地,生长着它们所青睐的树木。另一方面,这种蝴蝶引发有害事件的可能性很低,而且成年蝴蝶往往成群飞舞,在需要的时候可以很容易进行采集。

一只白鱀豚(学名:Lipotes vexillifer)白鱀豚(学名:Lipotes vexillifer)
加利福尼亚甜灰蝶(学名:Glaucopsyche xerces)已经灭绝加利福尼亚甜灰蝶(学名:Glaucopsyche xerces)已经灭绝

  不过,如果加利福尼亚甜灰蝶成为复活计划的第一个候选物种,能否吸引公众的注意力呢?猛犸象或剑齿虎等标志性物种或许才会让公众更加兴奋。

  考虑到猛犸象曾经在西伯利亚大草原生态系统中扮演过的重要角色,它们或许是复活计划的不错候选。剑齿虎则是顶级的掠食者,其最大的化石遗骸发现于洛杉矶汉考克公园附近的拉布雷亚沥青坑。无论是剑齿虎还是洛杉矶市民,可能都不会赞同这样的再引入计划。

  负罪感也经常激发人们想复活某些特定动物的欲望。人类的捕猎导致新西兰的恐鸟销声匿迹,也使曾经遮天蔽日的旅鸽走向灭绝。渡渡鸟的灭绝可能主要是因为船上的老鼠登上了毛里求斯岛。复活这些物种可能会让我们良心上感觉好点,但这并不是问题的关键。

  “我们应该把这种技术用在那些灭绝边缘或刚刚灭绝的物种身上,”塞登说,“我们对它们的栖息地有很多了解,我们拥有合适的遗传材料,并且知道如何在圈养条件下培育它们。”对某个物种的了解越多,我们就越有把握制造一个可持续的、高遗传多样性的种群,并使其在自然条件下存续很久。

  那么,灭绝动物的复活在技术上还有多久才能实现?比人们预想的要快得多。事实上,已经有科学家在尝试物种的复活了。2000年,科学家克隆出一只西班牙羱羊,利用的是从最后一只存活个体上采集的细胞样品。不过,这一推迟该物种灭绝的早期尝试并不成功:克隆西班牙羱羊在出生之后仅7分钟时就死于肺部缺陷。

  此外,还有一个经常被忽视的关键因素:真正的灭绝动物复活是不可能的。科学家目前尝试的方法中,没有一种能带来与灭绝物种完全一致的复制品。即使最先进的技术,也只能给我们一个替代品。

  其中一种方法被称为“选择性回交”(selective back-breeding),利用与已灭绝物种关系较近的物种作为实验对象。科学家选择那些在特征上类似灭绝物种的个体,对其进行选择性培育。在培育出来的后代中,再选择更加接近灭绝物种特征的个体,继续进行培育。最终,我们就能获得在形态特征上与已灭绝物种非常相似的种群——尽管二者在基因水平上并不相同。

  其他方法还包括从灭绝物种遗骸中提取遗传材料,然后注入到现有近亲物种的卵细胞中,然后为这枚卵找一位合适的代孕母亲。此外还有“体细胞核移植”技术,又称克隆。这一技术只适用于灭绝不久、能够保存下组织样品的物种。当然,克隆技术也可以用在健康种群中,比如多利羊。

普通西班牙羱羊(学名:Capra pyrenaica pyrenaica)的艺术画普通西班牙羱羊(学名:Capra pyrenaica pyrenaica)的艺术画

  如果物种灭绝时没有保留下足够的组织样品,那科学家就需要借助基因组工程技术来进行复活。脱氧核糖核酸(DNA)会随着时间推移而分解,越古老的生物样品,所包含的DNA碎片就越多。这就像一个有着几千块纸板组成的巨大拼图。令事情更加复杂的是,常常会有一些纸板是缺失的。要填补这些空白,就需要从关系较近的物种身上获得部分基因组。

  克隆和遗传工程的最终成果,都是一个需要通过代孕来发育的胚胎。科学家需要在与灭绝物种关系较近的物种中选择一个合适的代孕母亲,而胚胎的发育过程也会受到这个母亲的影响。代孕母亲子宫内的激素和生长因子会影响胚胎的发育,某些基因的开启和关闭模式也可能与胚胎原先所属的物种不同。因此,举例来说,一只由大象代孕并生出来的猛犸象其实并不能等同于冰河世纪中的那些庞然大物。

  而且,当“复活”的猛犸象出生后,它将是独一无二的。在人类或大象的抚养下,它将如何成长为一只猛犸象?作为替代品,它或许在基因上甚至行为上很接近已灭绝的同类,但永远不是真正的猛犸象。换句话说,复活灭绝动物实际上无法补偿人类活动对生态环境造成的伤害。

  一些科学家担心这个重要的观点被人忽视。他们认为,对复活灭绝动物的热衷甚至可能会伤害现实中的保育工作,因为这会给人以错误的印象,认为物种的灭绝不是永远的。尽管有这些担心,但阿克塞尔依然认为,如果技术出现的话,我们就应该使用。“我们永远不应该盲目地守着最熟悉和最舒适的东西,”他说,“事实在于,地球的形势已经十分危急,我们需要使用一切办法。”

  当然,可以确定的是,复活灭绝动物无法取代传统的保育行动。“生物多样性的损失是巨大的,”阿克塞尔说,“灭绝的速度之快令人难以置信,就算复活灭绝物种的理论可能性再高,复活的速度也无法追上灭绝的速度。”在我们成功复活一个物种的同时,可能就有一千个物种灭绝。对目前的人类而言,最重要的是保护好现有的一切,尤其是那些处于危急状况中的物种。

原文:

http://www.bbc.com/earth/story/20170127-how-to-decide-which-extinct-species-we-should-resurrect